Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindf Structured version   Visualization version   GIF version

Theorem nnindf 29895
 Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nnindf.x 𝑦𝜑
nnindf.1 (𝑥 = 1 → (𝜑𝜓))
nnindf.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindf.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindf.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnindf.5 𝜓
nnindf.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnindf (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1nn 11243 . . . . . 6 1 ∈ ℕ
2 nnindf.5 . . . . . 6 𝜓
3 nnindf.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3504 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 993 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3499 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11244 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnindf.6 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 587 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnindf.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3504 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnindf.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3504 . . . . . . . . 9 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 285 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3060 . . . . . 6 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 nnindf.x . . . . . . . 8 𝑦𝜑
19 nfcv 2902 . . . . . . . 8 𝑦
2018, 19nfrab 3262 . . . . . . 7 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
21 nfcv 2902 . . . . . . 7 𝑤{𝑥 ∈ ℕ ∣ 𝜑}
22 nfv 1992 . . . . . . 7 𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
2320nfel2 2919 . . . . . . 7 𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
24 oveq1 6821 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1))
2524eleq1d 2824 . . . . . . 7 (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2620, 21, 22, 23, 25cbvralf 3304 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2717, 26mpbi 220 . . . . 5 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
28 peano5nni 11235 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
295, 27, 28mp2an 710 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
3029sseli 3740 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
31 nnindf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
3231elrab 3504 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
3330, 32sylib 208 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
3433simprd 482 1 (𝐴 ∈ ℕ → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  Ⅎwnf 1857   ∈ wcel 2139  ∀wral 3050  {crab 3054   ⊆ wss 3715  (class class class)co 6814  1c1 10149   + caddc 10151  ℕcn 11232 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-1cn 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-nn 11233 This theorem is referenced by:  nn0min  29897
 Copyright terms: Public domain W3C validator