MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0modprm0 Structured version   Visualization version   GIF version

Theorem nnnn0modprm0 15438
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 15315 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
3 fzo0sn0fzo1 12501 . . . . 5 (𝑃 ∈ ℕ → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
42, 3syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
54eleq2d 2684 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) ↔ 𝐼 ∈ ({0} ∪ (1..^𝑃))))
6 elun 3733 . . . . 5 (𝐼 ∈ ({0} ∪ (1..^𝑃)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)))
7 elsni 4167 . . . . . . 7 (𝐼 ∈ {0} → 𝐼 = 0)
8 lbfzo0 12451 . . . . . . . . . . . . 13 (0 ∈ (0..^𝑃) ↔ 𝑃 ∈ ℕ)
91, 8sylibr 224 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 0 ∈ (0..^𝑃))
109adantr 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 0 ∈ (0..^𝑃))
11 elfzoelz 12414 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
12 zcn 11329 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 mul02 10161 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → (0 · 𝑁) = 0)
1413oveq2d 6623 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = (0 + 0))
15 00id 10158 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1614, 15syl6eq 2671 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = 0)
1711, 12, 163syl 18 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^𝑃) → (0 + (0 · 𝑁)) = 0)
1817adantl 482 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 + (0 · 𝑁)) = 0)
1918oveq1d 6622 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = (0 mod 𝑃))
20 nnrp 11789 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21 0mod 12644 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
221, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
2322adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
2419, 23eqtrd 2655 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = 0)
25 oveq1 6614 . . . . . . . . . . . . . . 15 (𝑗 = 0 → (𝑗 · 𝑁) = (0 · 𝑁))
2625oveq2d 6623 . . . . . . . . . . . . . 14 (𝑗 = 0 → (0 + (𝑗 · 𝑁)) = (0 + (0 · 𝑁)))
2726oveq1d 6622 . . . . . . . . . . . . 13 (𝑗 = 0 → ((0 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (0 · 𝑁)) mod 𝑃))
2827eqeq1d 2623 . . . . . . . . . . . 12 (𝑗 = 0 → (((0 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (0 · 𝑁)) mod 𝑃) = 0))
2928rspcev 3295 . . . . . . . . . . 11 ((0 ∈ (0..^𝑃) ∧ ((0 + (0 · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3010, 24, 29syl2anc 692 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3130adantl 482 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
32 oveq1 6614 . . . . . . . . . . . . 13 (𝐼 = 0 → (𝐼 + (𝑗 · 𝑁)) = (0 + (𝑗 · 𝑁)))
3332oveq1d 6622 . . . . . . . . . . . 12 (𝐼 = 0 → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (𝑗 · 𝑁)) mod 𝑃))
3433eqeq1d 2623 . . . . . . . . . . 11 (𝐼 = 0 → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3534adantr 481 . . . . . . . . . 10 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3635rexbidv 3045 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3731, 36mpbird 247 . . . . . . . 8 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3837ex 450 . . . . . . 7 (𝐼 = 0 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
397, 38syl 17 . . . . . 6 (𝐼 ∈ {0} → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
40 simpl 473 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
4140adantl 482 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑃 ∈ ℙ)
42 simprr 795 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑁 ∈ (1..^𝑃))
43 simpl 473 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝐼 ∈ (1..^𝑃))
44 modprm0 15437 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4541, 42, 43, 44syl3anc 1323 . . . . . . 7 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4645ex 450 . . . . . 6 (𝐼 ∈ (1..^𝑃) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4739, 46jaoi 394 . . . . 5 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
486, 47sylbi 207 . . . 4 (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4948com12 32 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
505, 49sylbid 230 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
51503impia 1258 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  cun 3554  {csn 4150  (class class class)co 6607  cc 9881  0cc0 9883  1c1 9884   + caddc 9886   · cmul 9888  cn 10967  cz 11324  +crp 11779  ..^cfzo 12409   mod cmo 12611  cprime 15312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-inf 8296  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-rp 11780  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-dvds 14911  df-gcd 15144  df-prm 15313  df-phi 15398
This theorem is referenced by:  modprmn0modprm0  15439
  Copyright terms: Public domain W3C validator