Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnolog2flm1 Structured version   Visualization version   GIF version

Theorem nnolog2flm1 41676
Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nnolog2flm1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))

Proof of Theorem nnolog2flm1
StepHypRef Expression
1 eluz2nn 11670 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnpw2blenfzo2 41668 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
31, 2syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
41adantl 482 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
5 nneo 11405 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
65bicomd 213 . . . . . . . . 9 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
74, 6syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
8 notnotb 304 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ)
97, 8syl6bb 276 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ))
109con4bid 307 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ (𝑁 / 2) ∈ ℕ))
11 simpl 473 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 = (2↑((#b𝑁) − 1)))
1211oveq1d 6619 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) = ((2↑((#b𝑁) − 1)) / 2))
13 blennnelnn 41662 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1413nnnn0d 11295 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ0)
151, 14syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ0)
16 2m1e1 11079 . . . . . . . . . . . . . 14 (2 − 1) = 1
17 2cn 11035 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
18 2ne0 11057 . . . . . . . . . . . . . . . . 17 2 ≠ 0
19 1ne2 11184 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
2019necomi 2844 . . . . . . . . . . . . . . . . 17 2 ≠ 1
21 logbid1 24406 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2217, 18, 20, 21mp3an 1421 . . . . . . . . . . . . . . . 16 (2 logb 2) = 1
23 eluzle 11644 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
24 2z 11353 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
25 uzid 11646 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ (ℤ‘2))
27 2rp 11781 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
291nnrpd 11814 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
30 logbleb 24421 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3126, 28, 29, 30syl3anc 1323 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3223, 31mpbid 222 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 2) ≤ (2 logb 𝑁))
3322, 32syl5eqbrr 4649 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 ≤ (2 logb 𝑁))
3420a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
35 relogbcl 24411 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3628, 29, 34, 35syl3anc 1323 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 𝑁) ∈ ℝ)
37 1zzd 11352 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
38 flge 12546 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
3936, 37, 38syl2anc 692 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
4033, 39mpbid 222 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌊‘(2 logb 𝑁)))
4116, 40syl5eqbr 4648 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2 − 1) ≤ (⌊‘(2 logb 𝑁)))
42 2re 11034 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
44 1red 9999 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
4536flcld 12539 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
4645zred 11426 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℝ)
4743, 44, 46lesubaddd 10568 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2 − 1) ≤ (⌊‘(2 logb 𝑁)) ↔ 2 ≤ ((⌊‘(2 logb 𝑁)) + 1)))
4841, 47mpbid 222 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 2 ≤ ((⌊‘(2 logb 𝑁)) + 1))
49 blennn 41661 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
501, 49syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5148, 50breqtrrd 4641 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ (#b𝑁))
52 nn0ge2m1nn 11304 . . . . . . . . . . 11 (((#b𝑁) ∈ ℕ0 ∧ 2 ≤ (#b𝑁)) → ((#b𝑁) − 1) ∈ ℕ)
5315, 51, 52syl2anc 692 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ)
5453adantl 482 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((#b𝑁) − 1) ∈ ℕ)
55 nnpw2even 41611 . . . . . . . . 9 (((#b𝑁) − 1) ∈ ℕ → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5654, 55syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5712, 56eqeltrd 2698 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) ∈ ℕ)
5857pm2.24d 147 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ (𝑁 / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
5910, 58sylbid 230 . . . . 5 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
6059ex 450 . . . 4 (𝑁 = (2↑((#b𝑁) − 1)) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
611, 13syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ)
62 nnm1nn0 11278 . . . . . . . . 9 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6361, 62syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ0)
6463ad2antlr 762 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
651ad2antlr 762 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ℕ)
66 nnpw2blenfzo 41667 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6765, 66syl 17 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6861nncnd 10980 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℂ)
6968ad2antlr 762 . . . . . . . . . . 11 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℂ)
70 npcan1 10399 . . . . . . . . . . 11 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
7169, 70syl 17 . . . . . . . . . 10 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
7271oveq2d 6620 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
7372oveq2d 6620 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) = ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
7467, 73eleqtrrd 2701 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
75 fllog2 41654 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7664, 74, 75syl2anc 692 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7761ad2antlr 762 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℕ)
7877, 62syl 17 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
79 elfzo2 12414 . . . . . . . . . . . 12 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
80 eluz2 11637 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ↔ (((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁))
81803anbi1i 1251 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
8279, 81bitri 264 . . . . . . . . . . 11 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
83 2nn 11129 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
8584, 63jca 554 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
8685adantl 482 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
87 nnexpcl 12813 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8988nnzd 11425 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℤ)
90 peano2zm 11364 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
91903ad2ant2 1081 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
9291adantr 481 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 − 1) ∈ ℤ)
9392adantr 481 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ℤ)
9484, 63nnexpcld 12970 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℕ)
9594nnred 10979 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℝ)
961nnred 10979 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
97 leaddsub 10448 . . . . . . . . . . . . . . . . . . . 20 (((2↑((#b𝑁) − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9895, 44, 96, 97syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9998biimpcd 239 . . . . . . . . . . . . . . . . . 18 (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
100993ad2ant3 1082 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
101100adantr 481 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
102101imp 445 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1))
103 eluz2 11637 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
10489, 93, 102, 103syl3anbrc 1244 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))))
10570eleq1d 2683 . . . . . . . . . . . . . . . . . . . 20 ((#b𝑁) ∈ ℂ → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10668, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10715, 106mpbird 247 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) ∈ ℕ0)
10884, 107jca 554 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
109108adantl 482 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
110 nnexpcl 12813 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
112111nnzd 11425 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ)
113 ltle 10070 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
114 nnre 10971 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
11542a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 2 ∈ ℝ)
116115, 14reexpcld 12965 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(#b𝑁)) ∈ ℝ)
117114, 116jca 554 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
1181, 117syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
119113, 118syl11 33 . . . . . . . . . . . . . . . . . 18 (𝑁 < (2↑(#b𝑁)) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
120119adantl 482 . . . . . . . . . . . . . . . . 17 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
121120imp 445 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≤ (2↑(#b𝑁)))
122 simpll2 1099 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
12384, 15nnexpcld 12970 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℕ)
124123nnzd 11425 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℤ)
125124adantl 482 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(#b𝑁)) ∈ ℤ)
126 zlem1lt 11373 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (2↑(#b𝑁)) ∈ ℤ) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
127122, 125, 126syl2anc 692 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
128121, 127mpbid 222 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(#b𝑁)))
12968, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) = (#b𝑁))
130129oveq2d 6620 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
131130adantl 482 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
132128, 131breqtrrd 4641 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))
133104, 112, 1323jca 1240 . . . . . . . . . . . . 13 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
134133ex 450 . . . . . . . . . . . 12 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
1351343adant2 1078 . . . . . . . . . . 11 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
13682, 135sylbi 207 . . . . . . . . . 10 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
137136imp 445 . . . . . . . . 9 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
138 elfzo2 12414 . . . . . . . . 9 ((𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) ↔ ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
139137, 138sylibr 224 . . . . . . . 8 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
140139adantr 481 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
141 fllog2 41654 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14278, 140, 141syl2anc 692 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14376, 142eqtr4d 2658 . . . . 5 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
144143exp31 629 . . . 4 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
14560, 144jaoi 394 . . 3 ((𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
1463, 145mpcom 38 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
147146imp 445 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  +crp 11776  ..^cfzo 12406  cfl 12531  cexp 12800   logb clogb 24402  #bcblen 41655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-cxp 24208  df-logb 24403  df-blen 41656
This theorem is referenced by:  blennngt2o2  41678
  Copyright terms: Public domain W3C validator