MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdom Structured version   Visualization version   GIF version

Theorem nnsdom 8496
Description: A natural number is strictly dominated by the set of natural numbers. Example 3 of [Enderton] p. 146. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
nnsdom (𝐴 ∈ ω → 𝐴 ≺ ω)

Proof of Theorem nnsdom
StepHypRef Expression
1 omex 8485 . 2 ω ∈ V
2 nnsdomg 8164 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)
31, 2mpan 705 1 (𝐴 ∈ ω → 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1992  Vcvv 3191   class class class wbr 4618  ωcom 7013  csdm 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-om 7014  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904
This theorem is referenced by:  cardom  8757  infxpenlem  8781  infcdaabs  8973  cflim2  9030  canthp1lem2  9420
  Copyright terms: Public domain W3C validator