MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomel Structured version   Visualization version   GIF version

Theorem nnsdomel 9006
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
nnsdomel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nnsdomel
StepHypRef Expression
1 cardnn 8979 . . 3 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
2 cardnn 8979 . . 3 (𝐵 ∈ ω → (card‘𝐵) = 𝐵)
3 eleq12 2829 . . 3 (((card‘𝐴) = 𝐴 ∧ (card‘𝐵) = 𝐵) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
41, 2, 3syl2an 495 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
5 nnon 7236 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
6 onenon 8965 . . . 4 (𝐴 ∈ On → 𝐴 ∈ dom card)
75, 6syl 17 . . 3 (𝐴 ∈ ω → 𝐴 ∈ dom card)
8 nnon 7236 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
9 onenon 8965 . . . 4 (𝐵 ∈ On → 𝐵 ∈ dom card)
108, 9syl 17 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom card)
11 cardsdom2 9004 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
127, 10, 11syl2an 495 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
134, 12bitr3d 270 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  dom cdm 5266  Oncon0 5884  cfv 6049  ωcom 7230  csdm 8120  cardccrd 8951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955
This theorem is referenced by:  fin23lem27  9342
  Copyright terms: Public domain W3C validator