Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrp Structured version   Visualization version   GIF version

Theorem nnsgrp 41602
Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrp 𝑀 ∈ SGrp

Proof of Theorem nnsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsgrp.m . . 3 𝑀 = (ℂflds ℕ)
21nnsgrpmgm 41601 . 2 𝑀 ∈ Mgm
3 nncn 10875 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
4 nncn 10875 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nncn 10875 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
6 addass 9879 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73, 4, 5, 6syl3an 1359 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
873expia 1258 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℕ → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
98ralrimiv 2947 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
109rgen2a 2959 . 2 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
11 nnsscn 10872 . . . 4 ℕ ⊆ ℂ
121cnfldsrngbas 41554 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
1311, 12ax-mp 5 . . 3 ℕ = (Base‘𝑀)
14 nnex 10873 . . . 4 ℕ ∈ V
151cnfldsrngadd 41555 . . . 4 (ℕ ∈ V → + = (+g𝑀))
1614, 15ax-mp 5 . . 3 + = (+g𝑀)
1713, 16issgrp 17054 . 2 (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
182, 10, 17mpbir2an 956 1 𝑀 ∈ SGrp
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539  cfv 5790  (class class class)co 6527  cc 9790   + caddc 9795  cn 10867  Basecbs 15641  s cress 15642  +gcplusg 15714  Mgmcmgm 17009  SGrpcsgrp 17052  fldccnfld 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-mgm 17011  df-sgrp 17053  df-cnfld 19514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator