Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   GIF version

Theorem nnsum3primesgbe 40995
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesgbe
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 40960 . 2 (𝑁 ∈ GoldbachEven ↔ (𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))))
2 2nn 11137 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ)
4 oveq2 6618 . . . . . . . . . . 11 (𝑑 = 2 → (1...𝑑) = (1...2))
5 df-2 11031 . . . . . . . . . . . . 13 2 = (1 + 1)
65oveq2i 6621 . . . . . . . . . . . 12 (1...2) = (1...(1 + 1))
7 1z 11359 . . . . . . . . . . . . 13 1 ∈ ℤ
8 fzpr 12346 . . . . . . . . . . . . 13 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
97, 8ax-mp 5 . . . . . . . . . . . 12 (1...(1 + 1)) = {1, (1 + 1)}
10 1p1e2 11086 . . . . . . . . . . . . 13 (1 + 1) = 2
1110preq2i 4247 . . . . . . . . . . . 12 {1, (1 + 1)} = {1, 2}
126, 9, 113eqtri 2647 . . . . . . . . . . 11 (1...2) = {1, 2}
134, 12syl6eq 2671 . . . . . . . . . 10 (𝑑 = 2 → (1...𝑑) = {1, 2})
1413oveq2d 6626 . . . . . . . . 9 (𝑑 = 2 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 {1, 2}))
15 breq1 4621 . . . . . . . . . 10 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
1613sumeq1d 14373 . . . . . . . . . . 11 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
1716eqeq2d 2631 . . . . . . . . . 10 (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
1815, 17anbi12d 746 . . . . . . . . 9 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
1914, 18rexeqbidv 3145 . . . . . . . 8 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
2019adantl 482 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
21 1ne2 11192 . . . . . . . . . . . . 13 1 ≠ 2
22 1ex 9987 . . . . . . . . . . . . . 14 1 ∈ V
23 2ex 11044 . . . . . . . . . . . . . 14 2 ∈ V
24 vex 3192 . . . . . . . . . . . . . 14 𝑝 ∈ V
25 vex 3192 . . . . . . . . . . . . . 14 𝑞 ∈ V
2622, 23, 24, 25fpr 6381 . . . . . . . . . . . . 13 (1 ≠ 2 → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
2721, 26mp1i 13 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
28 prssi 4326 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ)
2927, 28fssd 6019 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ)
30 prmex 15326 . . . . . . . . . . . . 13 ℙ ∈ V
31 prex 4875 . . . . . . . . . . . . 13 {1, 2} ∈ V
3230, 31pm3.2i 471 . . . . . . . . . . . 12 (ℙ ∈ V ∧ {1, 2} ∈ V)
33 elmapg 7822 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3432, 33mp1i 13 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3529, 34mpbird 247 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}))
36 fveq1 6152 . . . . . . . . . . . . . . 15 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3736adantr 481 . . . . . . . . . . . . . 14 ((𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∧ 𝑘 ∈ {1, 2}) → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3837sumeq2dv 14375 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3938eqeq1d 2623 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
4039anbi2d 739 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
4140adantl 482 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
42 prmz 15324 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 15324 . . . . . . . . . . . 12 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 fveq2 6153 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1))
4522, 24fvpr1 6416 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝)
4621, 45ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝
4744, 46syl6eq 2671 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑝)
48 fveq2 6153 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2))
4923, 25fvpr2 6417 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞)
5021, 49ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞
5148, 50syl6eq 2671 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑞)
52 zcn 11334 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℂ)
53 zcn 11334 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℂ)
5452, 53anim12i 589 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ))
557, 2pm3.2i 471 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℕ)
5655a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1 ∈ ℤ ∧ 2 ∈ ℕ))
5721a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠ 2)
5847, 51, 54, 56, 57sumpr 14418 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
5942, 43, 58syl2an 494 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
60 2re 11042 . . . . . . . . . . . 12 2 ∈ ℝ
61 3re 11046 . . . . . . . . . . . 12 3 ∈ ℝ
62 2lt3 11147 . . . . . . . . . . . 12 2 < 3
6360, 61, 62ltleii 10112 . . . . . . . . . . 11 2 ≤ 3
6459, 63jctil 559 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
6535, 41, 64rspcedvd 3305 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
6665adantr 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
67 eqeq1 2625 . . . . . . . . . . . . 13 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
68 eqcom 2628 . . . . . . . . . . . . 13 ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))
6967, 68syl6bb 276 . . . . . . . . . . . 12 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
7069anbi2d 739 . . . . . . . . . . 11 (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7170rexbidv 3046 . . . . . . . . . 10 (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
72713ad2ant3 1082 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7372adantl 482 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7466, 73mpbird 247 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
753, 20, 74rspcedvd 3305 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7675a1d 25 . . . . 5 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7776ex 450 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))))
7877rexlimivv 3030 . . 3 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7978impcom 446 . 2 ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
801, 79sylbi 207 1 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3189  {cpr 4155  cop 4159   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  cc 9886  1c1 9889   + caddc 9891  cle 10027  cn 10972  2c2 11022  3c3 11023  cz 11329  ...cfz 12276  Σcsu 14358  cprime 15320   Even ceven 40862   Odd codd 40863   GoldbachEven cgbe 40954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-prm 15321  df-gbe 40957
This theorem is referenced by:  nnsum4primesgbe  40996  nnsum3primesle9  40997  bgoldbnnsum3prm  41007
  Copyright terms: Public domain W3C validator