Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesle9 Structured version   Visualization version   GIF version

Theorem nnsum3primesle9 43836
Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesle9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesle9
StepHypRef Expression
1 eluzelre 12242 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 8re 11721 . . . . . 6 8 ∈ ℝ
32a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℝ)
41, 3leloed 10771 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 ↔ (𝑁 < 8 ∨ 𝑁 = 8)))
5 eluzelz 12241 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6 7nn 11717 . . . . . . . . . 10 7 ∈ ℕ
76nnzi 11994 . . . . . . . . 9 7 ∈ ℤ
8 zleltp1 12021 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 7 ∈ ℤ) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
95, 7, 8sylancl 586 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
10 7re 11718 . . . . . . . . . 10 7 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 7 ∈ ℝ)
121, 11leloed 10771 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
13 7p1e8 11774 . . . . . . . . . 10 (7 + 1) = 8
1413breq2i 5065 . . . . . . . . 9 (𝑁 < (7 + 1) ↔ 𝑁 < 8)
1514a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < (7 + 1) ↔ 𝑁 < 8))
169, 12, 153bitr3rd 311 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
17 6nn 11714 . . . . . . . . . . . 12 6 ∈ ℕ
1817nnzi 11994 . . . . . . . . . . 11 6 ∈ ℤ
19 zleltp1 12021 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
205, 18, 19sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
21 6re 11715 . . . . . . . . . . . 12 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 6 ∈ ℝ)
231, 22leloed 10771 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
24 6p1e7 11773 . . . . . . . . . . . 12 (6 + 1) = 7
2524breq2i 5065 . . . . . . . . . . 11 (𝑁 < (6 + 1) ↔ 𝑁 < 7)
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < (6 + 1) ↔ 𝑁 < 7))
2720, 23, 263bitr3rd 311 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
28 5nn 11711 . . . . . . . . . . . . . 14 5 ∈ ℕ
2928nnzi 11994 . . . . . . . . . . . . 13 5 ∈ ℤ
30 zleltp1 12021 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 5 ∈ ℤ) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
315, 29, 30sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
32 5re 11712 . . . . . . . . . . . . . 14 5 ∈ ℝ
3332a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 5 ∈ ℝ)
341, 33leloed 10771 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
35 5p1e6 11772 . . . . . . . . . . . . . 14 (5 + 1) = 6
3635breq2i 5065 . . . . . . . . . . . . 13 (𝑁 < (5 + 1) ↔ 𝑁 < 6)
3736a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < (5 + 1) ↔ 𝑁 < 6))
3831, 34, 373bitr3rd 311 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
39 4z 12004 . . . . . . . . . . . . . . 15 4 ∈ ℤ
40 zleltp1 12021 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
415, 39, 40sylancl 586 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
42 4re 11709 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℝ)
441, 43leloed 10771 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
45 4p1e5 11771 . . . . . . . . . . . . . . . 16 (4 + 1) = 5
4645breq2i 5065 . . . . . . . . . . . . . . 15 (𝑁 < (4 + 1) ↔ 𝑁 < 5)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < (4 + 1) ↔ 𝑁 < 5))
4841, 44, 473bitr3rd 311 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
49 3z 12003 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
50 zleltp1 12021 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
515, 49, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
52 3re 11705 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
541, 53leloed 10771 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
55 3p1e4 11770 . . . . . . . . . . . . . . . . . 18 (3 + 1) = 4
5655breq2i 5065 . . . . . . . . . . . . . . . . 17 (𝑁 < (3 + 1) ↔ 𝑁 < 4)
5756a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < (3 + 1) ↔ 𝑁 < 4))
5851, 54, 573bitr3rd 311 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
59 eluz2 12237 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
60 2re 11699 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 2 ∈ ℝ)
62 zre 11973 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6361, 62leloed 10771 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
64 3m1e2 11753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 − 1) = 2
6564eqcomi 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 = (3 − 1)
6665breq1i 5064 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 < 𝑁 ↔ (3 − 1) < 𝑁)
67 zlem1lt 12022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6849, 67mpan 686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6968biimprd 249 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → ((3 − 1) < 𝑁 → 3 ≤ 𝑁))
7066, 69syl5bi 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (2 < 𝑁 → 3 ≤ 𝑁))
7152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7271, 62lenltd 10774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ ¬ 𝑁 < 3))
73 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 < 3 → (𝑁 < 3 → 𝑁 = 2))
7472, 73syl6bi 254 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
7570, 74syldc 48 . . . . . . . . . . . . . . . . . . . . . . 23 (2 < 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
76 eqcom 2825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 = 𝑁𝑁 = 2)
7776biimpi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 𝑁𝑁 = 2)
78772a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
7975, 78jaoi 851 . . . . . . . . . . . . . . . . . . . . . 22 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
8079com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
8163, 80sylbid 241 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
8281imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
83 2lt3 11797 . . . . . . . . . . . . . . . . . . . 20 2 < 3
84 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 < 3 ↔ 2 < 3))
8583, 84mpbiri 259 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → 𝑁 < 3)
8682, 85impbid1 226 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
87863adant1 1122 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
8859, 87sylbi 218 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 ↔ 𝑁 = 2))
8988orbi1d 910 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 3 ∨ 𝑁 = 3) ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9058, 89bitrd 280 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9190orbi1d 910 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 4 ∨ 𝑁 = 4) ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9248, 91bitrd 280 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9392orbi1d 910 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 5 ∨ 𝑁 = 5) ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9438, 93bitrd 280 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9594orbi1d 910 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 6 ∨ 𝑁 = 6) ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9627, 95bitrd 280 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9796orbi1d 910 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 7 ∨ 𝑁 = 7) ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9816, 97bitrd 280 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9998orbi1d 910 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) ↔ ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
10099biimpd 230 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
1014, 100sylbid 241 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
102101imp 407 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8))
103 2prm 16024 . . . . . . . . . 10 2 ∈ ℙ
104 eleq1 2897 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 ∈ ℙ ↔ 2 ∈ ℙ))
105103, 104mpbiri 259 . . . . . . . . 9 (𝑁 = 2 → 𝑁 ∈ ℙ)
106 nnsum3primesprm 43832 . . . . . . . . 9 (𝑁 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
107105, 106syl 17 . . . . . . . 8 (𝑁 = 2 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
108 3prm 16026 . . . . . . . . . 10 3 ∈ ℙ
109 eleq1 2897 . . . . . . . . . 10 (𝑁 = 3 → (𝑁 ∈ ℙ ↔ 3 ∈ ℙ))
110108, 109mpbiri 259 . . . . . . . . 9 (𝑁 = 3 → 𝑁 ∈ ℙ)
111110, 106syl 17 . . . . . . . 8 (𝑁 = 3 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
112107, 111jaoi 851 . . . . . . 7 ((𝑁 = 2 ∨ 𝑁 = 3) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
113 nnsum3primes4 43830 . . . . . . . 8 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
114 eqeq1 2822 . . . . . . . . . 10 (𝑁 = 4 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
115114anbi2d 628 . . . . . . . . 9 (𝑁 = 4 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1161152rexbidv 3297 . . . . . . . 8 (𝑁 = 4 → (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
117113, 116mpbiri 259 . . . . . . 7 (𝑁 = 4 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
118112, 117jaoi 851 . . . . . 6 (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
119 5prm 16430 . . . . . . . 8 5 ∈ ℙ
120 eleq1 2897 . . . . . . . 8 (𝑁 = 5 → (𝑁 ∈ ℙ ↔ 5 ∈ ℙ))
121119, 120mpbiri 259 . . . . . . 7 (𝑁 = 5 → 𝑁 ∈ ℙ)
122121, 106syl 17 . . . . . 6 (𝑁 = 5 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
123118, 122jaoi 851 . . . . 5 ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
124 6gbe 43813 . . . . . . 7 6 ∈ GoldbachEven
125 eleq1 2897 . . . . . . 7 (𝑁 = 6 → (𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ))
126124, 125mpbiri 259 . . . . . 6 (𝑁 = 6 → 𝑁 ∈ GoldbachEven )
127 nnsum3primesgbe 43834 . . . . . 6 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
128126, 127syl 17 . . . . 5 (𝑁 = 6 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
129123, 128jaoi 851 . . . 4 (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
130 7prm 16432 . . . . . 6 7 ∈ ℙ
131 eleq1 2897 . . . . . 6 (𝑁 = 7 → (𝑁 ∈ ℙ ↔ 7 ∈ ℙ))
132130, 131mpbiri 259 . . . . 5 (𝑁 = 7 → 𝑁 ∈ ℙ)
133132, 106syl 17 . . . 4 (𝑁 = 7 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
134129, 133jaoi 851 . . 3 ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
135 8gbe 43815 . . . . 5 8 ∈ GoldbachEven
136 eleq1 2897 . . . . 5 (𝑁 = 8 → (𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ))
137135, 136mpbiri 259 . . . 4 (𝑁 = 8 → 𝑁 ∈ GoldbachEven )
138137, 127syl 17 . . 3 (𝑁 = 8 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
139134, 138jaoi 851 . 2 (((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
140102, 139syl 17 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  m cmap 8395  cr 10524  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cn 11626  2c2 11680  3c3 11681  4c4 11682  5c5 11683  6c6 11684  7c7 11685  8c8 11686  cz 11969  cuz 12231  ...cfz 12880  Σcsu 15030  cprime 16003   GoldbachEven cgbe 43787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-prm 16004  df-even 43668  df-odd 43669  df-gbe 43790
This theorem is referenced by:  nnsum4primesle9  43837  bgoldbnnsum3prm  43846
  Copyright terms: Public domain W3C validator