Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesprm Structured version   Visualization version   GIF version

Theorem nnsum3primesprm 41443
 Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.)
Assertion
Ref Expression
nnsum3primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesprm
StepHypRef Expression
1 1nn 11016 . 2 1 ∈ ℕ
2 1zzd 11393 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ ℤ)
3 id 22 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
42, 3fsnd 6166 . . . 4 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩}:{1}⟶ℙ)
5 prmex 15372 . . . . 5 ℙ ∈ V
6 snex 4899 . . . . 5 {1} ∈ V
75, 6elmap 7871 . . . 4 ({⟨1, 𝑃⟩} ∈ (ℙ ↑𝑚 {1}) ↔ {⟨1, 𝑃⟩}:{1}⟶ℙ)
84, 7sylibr 224 . . 3 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩} ∈ (ℙ ↑𝑚 {1}))
9 1re 10024 . . . . . . 7 1 ∈ ℝ
10 simpl 473 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ)
11 fvsng 6432 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
129, 10, 11sylancr 694 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
1312sumeq2dv 14414 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1) = Σ𝑘 ∈ {1}𝑃)
14 prmz 15370 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1514zcnd 11468 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
16 eqidd 2621 . . . . . . 7 (𝑘 = 1 → 𝑃 = 𝑃)
1716sumsn 14456 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃)
189, 15, 17sylancr 694 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃)
1913, 18eqtr2d 2655 . . . 4 (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
20 1le3 11229 . . . 4 1 ≤ 3
2119, 20jctil 559 . . 3 (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
22 simpl 473 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑓 = {⟨1, 𝑃⟩})
23 elsni 4185 . . . . . . . . 9 (𝑘 ∈ {1} → 𝑘 = 1)
2423adantl 482 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑘 = 1)
2522, 24fveq12d 6184 . . . . . . 7 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → (𝑓𝑘) = ({⟨1, 𝑃⟩}‘1))
2625sumeq2dv 14414 . . . . . 6 (𝑓 = {⟨1, 𝑃⟩} → Σ𝑘 ∈ {1} (𝑓𝑘) = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
2726eqeq2d 2630 . . . . 5 (𝑓 = {⟨1, 𝑃⟩} → (𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
2827anbi2d 739 . . . 4 (𝑓 = {⟨1, 𝑃⟩} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))))
2928rspcev 3304 . . 3 (({⟨1, 𝑃⟩} ∈ (ℙ ↑𝑚 {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
308, 21, 29syl2anc 692 . 2 (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
31 oveq2 6643 . . . . . 6 (𝑑 = 1 → (1...𝑑) = (1...1))
32 1z 11392 . . . . . . 7 1 ∈ ℤ
33 fzsn 12368 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
3432, 33ax-mp 5 . . . . . 6 (1...1) = {1}
3531, 34syl6eq 2670 . . . . 5 (𝑑 = 1 → (1...𝑑) = {1})
3635oveq2d 6651 . . . 4 (𝑑 = 1 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 {1}))
37 breq1 4647 . . . . 5 (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3))
3835sumeq1d 14412 . . . . . 6 (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1} (𝑓𝑘))
3938eqeq2d 2630 . . . . 5 (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
4037, 39anbi12d 746 . . . 4 (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4136, 40rexeqbidv 3148 . . 3 (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4241rspcev 3304 . 2 ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
431, 30, 42sylancr 694 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988  ∃wrex 2910  {csn 4168  ⟨cop 4174   class class class wbr 4644  ⟶wf 5872  ‘cfv 5876  (class class class)co 6635   ↑𝑚 cmap 7842  ℂcc 9919  ℝcr 9920  1c1 9922   ≤ cle 10060  ℕcn 11005  3c3 11056  ℤcz 11362  ...cfz 12311  Σcsu 14397  ℙcprime 15366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-prm 15367 This theorem is referenced by:  nnsum4primesprm  41444  nnsum3primesle9  41447
 Copyright terms: Public domain W3C validator