MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Structured version   Visualization version   GIF version

Theorem nnullss 4896
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnullss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 3912 . 2 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2 vex 3194 . . . . 5 𝑦 ∈ V
32snss 4291 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
42snnz 4284 . . . . 5 {𝑦} ≠ ∅
5 snex 4874 . . . . . 6 {𝑦} ∈ V
6 sseq1 3610 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
7 neeq1 2858 . . . . . . 7 (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅))
86, 7anbi12d 746 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅)))
95, 8spcev 3291 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
104, 9mpan2 706 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
113, 10sylbi 207 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
1211exlimiv 1860 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
131, 12sylbi 207 1 (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  wne 2796  wss 3560  c0 3896  {csn 4153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-sn 4154  df-pr 4156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator