MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwof Structured version   Visualization version   GIF version

Theorem nnwof 12308
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1 𝑥𝐴
nnwof.2 𝑦𝐴
Assertion
Ref Expression
nnwof ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nnwof
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwo 12307 . 2 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑤𝐴𝑣𝐴 𝑤𝑣)
2 nfcv 2977 . . 3 𝑤𝐴
3 nnwof.1 . . 3 𝑥𝐴
4 nfv 1911 . . . 4 𝑥 𝑤𝑣
53, 4nfralw 3225 . . 3 𝑥𝑣𝐴 𝑤𝑣
6 nfv 1911 . . 3 𝑤𝑦𝐴 𝑥𝑦
7 breq1 5062 . . . . 5 (𝑤 = 𝑥 → (𝑤𝑣𝑥𝑣))
87ralbidv 3197 . . . 4 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑣𝐴 𝑥𝑣))
9 nfcv 2977 . . . . 5 𝑣𝐴
10 nnwof.2 . . . . 5 𝑦𝐴
11 nfv 1911 . . . . 5 𝑦 𝑥𝑣
12 nfv 1911 . . . . 5 𝑣 𝑥𝑦
13 breq2 5063 . . . . 5 (𝑣 = 𝑦 → (𝑥𝑣𝑥𝑦))
149, 10, 11, 12, 13cbvralfw 3438 . . . 4 (∀𝑣𝐴 𝑥𝑣 ↔ ∀𝑦𝐴 𝑥𝑦)
158, 14syl6bb 289 . . 3 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑦𝐴 𝑥𝑦))
162, 3, 5, 6, 15cbvrexfw 3439 . 2 (∃𝑤𝐴𝑣𝐴 𝑤𝑣 ↔ ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
171, 16sylib 220 1 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wnfc 2961  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   class class class wbr 5059  cle 10670  cn 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by:  nnwos  12309
  Copyright terms: Public domain W3C validator