Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextenddif Structured version   Visualization version   GIF version

Theorem noextenddif 33179
Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextenddif (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem noextenddif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nodmon 33161 . . 3 (𝐴 No → dom 𝐴 ∈ On)
2 noextend.1 . . . . . 6 𝑋 ∈ {1o, 2o}
32nosgnn0i 33170 . . . . 5 ∅ ≠ 𝑋
43a1i 11 . . . 4 (𝐴 No → ∅ ≠ 𝑋)
5 nodmord 33164 . . . . . 6 (𝐴 No → Ord dom 𝐴)
6 ordirr 6212 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
75, 6syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
8 ndmfv 6703 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
97, 8syl 17 . . . 4 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
10 nofun 33160 . . . . . . 7 (𝐴 No → Fun 𝐴)
11 funfn 6388 . . . . . . 7 (Fun 𝐴𝐴 Fn dom 𝐴)
1210, 11sylib 220 . . . . . 6 (𝐴 No 𝐴 Fn dom 𝐴)
13 fnsng 6409 . . . . . . 7 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
141, 2, 13sylancl 588 . . . . . 6 (𝐴 No → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
15 disjsn 4650 . . . . . . 7 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
167, 15sylibr 236 . . . . . 6 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
17 snidg 4602 . . . . . . 7 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
181, 17syl 17 . . . . . 6 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
19 fvun2 6758 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
2012, 14, 16, 18, 19syl112anc 1370 . . . . 5 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
21 fvsng 6945 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
221, 2, 21sylancl 588 . . . . 5 (𝐴 No → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
2320, 22eqtrd 2859 . . . 4 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = 𝑋)
244, 9, 233netr4d 3096 . . 3 (𝐴 No → (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
25 fveq2 6673 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
26 fveq2 6673 . . . . 5 (𝑥 = dom 𝐴 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
2725, 26neeq12d 3080 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴)))
2827onintss 6244 . . 3 (dom 𝐴 ∈ On → ((𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴))
291, 24, 28sylc 65 . 2 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴)
30 eloni 6204 . . . . . . . 8 (𝑦 ∈ On → Ord 𝑦)
31 ordtri2 6229 . . . . . . . . . 10 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦)))
32 eqcom 2831 . . . . . . . . . . . . 13 (𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦)
3332orbi1i 910 . . . . . . . . . . . 12 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦))
34 orcom 866 . . . . . . . . . . . 12 ((dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3533, 34bitri 277 . . . . . . . . . . 11 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3635notbii 322 . . . . . . . . . 10 (¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3731, 36syl6bb 289 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
38 ordsseleq 6223 . . . . . . . . . . 11 ((Ord dom 𝐴 ∧ Ord 𝑦) → (dom 𝐴𝑦 ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
3938notbid 320 . . . . . . . . . 10 ((Ord dom 𝐴 ∧ Ord 𝑦) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4039ancoms 461 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4137, 40bitr4d 284 . . . . . . . 8 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
4230, 5, 41syl2anr 598 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
43123ad2ant1 1129 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝐴 Fn dom 𝐴)
44143ad2ant1 1129 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
45163ad2ant1 1129 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
46 simp3 1134 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ dom 𝐴)
47 fvun1 6757 . . . . . . . . . 10 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ 𝑦 ∈ dom 𝐴)) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4843, 44, 45, 46, 47syl112anc 1370 . . . . . . . . 9 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4948eqcomd 2830 . . . . . . . 8 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
50493expia 1117 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5142, 50sylbird 262 . . . . . 6 ((𝐴 No 𝑦 ∈ On) → (¬ dom 𝐴𝑦 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5251necon1ad 3036 . . . . 5 ((𝐴 No 𝑦 ∈ On) → ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5352ralrimiva 3185 . . . 4 (𝐴 No → ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
54 fveq2 6673 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
55 fveq2 6673 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
5654, 55neeq12d 3080 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5756ralrab 3688 . . . 4 (∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦 ↔ ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5853, 57sylibr 236 . . 3 (𝐴 No → ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
59 ssint 4895 . . 3 (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ↔ ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
6058, 59sylibr 236 . 2 (𝐴 No → dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)})
6129, 60eqssd 3987 1 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  {crab 3145  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4570  {cpr 4572  cop 4576   cint 4879  dom cdm 5558  Ord word 6193  Oncon0 6194  Fun wfun 6352   Fn wfn 6353  cfv 6358  1oc1o 8098  2oc2o 8099   No csur 33151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-1o 8105  df-2o 8106  df-no 33154
This theorem is referenced by:  noextendlt  33180  noextendgt  33181
  Copyright terms: Public domain W3C validator