MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfep Structured version   Visualization version   GIF version

Theorem noinfep 8595
Description: Using the Axiom of Regularity in the form zfregfr 8547, show that there are no infinite descending -chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
noinfep 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Distinct variable group:   𝑥,𝐹

Proof of Theorem noinfep
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8578 . . . . 5 ω ∈ V
21mptex 6527 . . . 4 (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
32rnex 7142 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
4 zfregfr 8547 . . 3 E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))
5 ssid 3657 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤))
6 dmmptg 5670 . . . . . 6 (∀𝑤 ∈ ω (𝐹𝑤) ∈ V → dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω)
7 fvexd 6241 . . . . . 6 (𝑤 ∈ ω → (𝐹𝑤) ∈ V)
86, 7mprg 2955 . . . . 5 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω
9 peano1 7127 . . . . . 6 ∅ ∈ ω
109ne0ii 3956 . . . . 5 ω ≠ ∅
118, 10eqnetri 2893 . . . 4 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
12 dm0rn0 5374 . . . . 5 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅)
1312necon3bii 2875 . . . 4 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)
1411, 13mpbi 220 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
15 fri 5105 . . 3 (((ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V ∧ E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))) ∧ (ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∧ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)) → ∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦)
163, 4, 5, 14, 15mp4an 709 . 2 𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦
17 fvex 6239 . . . . . . 7 (𝐹𝑤) ∈ V
18 eqid 2651 . . . . . . 7 (𝑤 ∈ ω ↦ (𝐹𝑤)) = (𝑤 ∈ ω ↦ (𝐹𝑤))
1917, 18fnmpti 6060 . . . . . 6 (𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω
20 fvelrnb 6282 . . . . . 6 ((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦))
2119, 20ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦)
22 peano2 7128 . . . . . . . . . 10 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
23 fveq2 6229 . . . . . . . . . . 11 (𝑤 = suc 𝑥 → (𝐹𝑤) = (𝐹‘suc 𝑥))
24 fvex 6239 . . . . . . . . . . 11 (𝐹‘suc 𝑥) ∈ V
2523, 18, 24fvmpt 6321 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
2622, 25syl 17 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
27 fnfvelrn 6396 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω ∧ suc 𝑥 ∈ ω) → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2819, 22, 27sylancr 696 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2926, 28eqeltrrd 2731 . . . . . . . 8 (𝑥 ∈ ω → (𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
30 epel 5061 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑧𝑦)
31 eleq1 2718 . . . . . . . . . . . 12 (𝑧 = (𝐹‘suc 𝑥) → (𝑧𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3230, 31syl5bb 272 . . . . . . . . . . 11 (𝑧 = (𝐹‘suc 𝑥) → (𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3332notbid 307 . . . . . . . . . 10 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦))
34 df-nel 2927 . . . . . . . . . 10 ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦)
3533, 34syl6bbr 278 . . . . . . . . 9 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∉ 𝑦))
3635rspccv 3337 . . . . . . . 8 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ((𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (𝐹‘suc 𝑥) ∉ 𝑦))
3729, 36syl5com 31 . . . . . . 7 (𝑥 ∈ ω → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝐹‘suc 𝑥) ∉ 𝑦))
38 fveq2 6229 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
39 fvex 6239 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
4038, 18, 39fvmpt 6321 . . . . . . . . . 10 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥))
41 eqeq1 2655 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥) ↔ 𝑦 = (𝐹𝑥)))
4240, 41syl5ibcom 235 . . . . . . . . 9 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦𝑦 = (𝐹𝑥)))
43 neleq2 2932 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4443biimpd 219 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4542, 44syl6 35 . . . . . . . 8 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4645com23 86 . . . . . . 7 (𝑥 ∈ ω → ((𝐹‘suc 𝑥) ∉ 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4737, 46syldc 48 . . . . . 6 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4847reximdvai 3044 . . . . 5 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4921, 48syl5bi 232 . . . 4 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5049com12 32 . . 3 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5150rexlimiv 3056 . 2 (∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥))
5216, 51ax-mp 5 1 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1523  wcel 2030  wne 2823  wnel 2926  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762   E cep 5057   Fr wfr 5099  dom cdm 5143  ran crn 5144  suc csuc 5763   Fn wfn 5921  cfv 5926  ωcom 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator