Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolt02o Structured version   Visualization version   GIF version

Theorem nolt02o 33199
Description: Given 𝐴 less than 𝐵, equal to 𝐵 up to 𝑋, and undefined at 𝑋, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)

Proof of Theorem nolt02o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1199 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
2 sltso 33181 . . . . . 6 <s Or No
3 sonr 5495 . . . . . 6 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
42, 3mpan 688 . . . . 5 (𝐴 No → ¬ 𝐴 <s 𝐴)
51, 4syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
6 simp2r 1196 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
7 breq2 5069 . . . . 5 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
86, 7syl5ibrcom 249 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 = 𝐵𝐴 <s 𝐴))
95, 8mtod 200 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 = 𝐵)
10 simpl2l 1222 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
11 simpl11 1244 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
12 nofun 33156 . . . . . 6 (𝐴 No → Fun 𝐴)
13 funrel 6371 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
1411, 12, 133syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐴)
15 simpl13 1246 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝑋 ∈ On)
16 simpl3 1189 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = ∅)
17 nolt02olem 33198 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
1811, 15, 16, 17syl3anc 1367 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐴𝑋)
19 relssres 5892 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
2014, 18, 19syl2anc 586 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 𝐴)
21 simpl12 1245 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
22 nofun 33156 . . . . . 6 (𝐵 No → Fun 𝐵)
23 funrel 6371 . . . . . 6 (Fun 𝐵 → Rel 𝐵)
2421, 22, 233syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐵)
25 simpr 487 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = ∅)
26 nolt02olem 33198 . . . . . 6 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2721, 15, 25, 26syl3anc 1367 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
28 relssres 5892 . . . . 5 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2924, 27, 28syl2anc 586 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = 𝐵)
3010, 20, 293eqtr3d 2864 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 = 𝐵)
319, 30mtand 814 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = ∅)
32 simp12 1200 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
33 sltval 33154 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
341, 32, 33syl2anc 586 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
356, 34mpbid 234 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 df-an 399 . . . . . 6 ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736rexbii 3247 . . . . 5 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
38 rexnal 3238 . . . . 5 (∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3937, 38bitri 277 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
4035, 39sylib 220 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
41 1oex 8109 . . . . . . . . . . . 12 1o ∈ V
4241prid1 4697 . . . . . . . . . . 11 1o ∈ {1o, 2o}
4342nosgnn0i 33166 . . . . . . . . . 10 ∅ ≠ 1o
4443neii 3018 . . . . . . . . 9 ¬ ∅ = 1o
45 simpll3 1210 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = ∅)
46 simplr 767 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = 1o)
47 eqeq1 2825 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋) = ∅ ↔ (𝐵𝑋) = ∅))
4847anbi1d 631 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) ↔ ((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o)))
49 eqtr2 2842 . . . . . . . . . . . 12 (((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o)
5048, 49syl6bi 255 . . . . . . . . . . 11 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o))
5150com12 32 . . . . . . . . . 10 (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5245, 46, 51syl2anc 586 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5344, 52mtoi 201 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋) = (𝐵𝑋))
54 simpr 487 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → 𝑋𝑥)
55 simplrr 776 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))
56 fveq2 6669 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
57 fveq2 6669 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
5856, 57eqeq12d 2837 . . . . . . . . . 10 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
5958rspcv 3617 . . . . . . . . 9 (𝑋𝑥 → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝐴𝑋) = (𝐵𝑋)))
6054, 55, 59sylc 65 . . . . . . . 8 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → (𝐴𝑋) = (𝐵𝑋))
6153, 60mtand 814 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
62 simprl 769 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
63 simpl13 1246 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → 𝑋 ∈ On)
6463adantr 483 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
65 ontri1 6224 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6662, 64, 65syl2anc 586 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6761, 66mpbird 259 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥𝑋)
68 onsseleq 6231 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
6962, 64, 68syl2anc 586 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
70 eqtr2 2842 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 1o) → ∅ = 1o)
7170ancoms 461 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → ∅ = 1o)
7244, 71mto 199 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
73 df-1o 8101 . . . . . . . . . . . . . . . 16 1o = suc ∅
74 df-2o 8102 . . . . . . . . . . . . . . . 16 2o = suc 1o
7573, 74eqeq12i 2836 . . . . . . . . . . . . . . 15 (1o = 2o ↔ suc ∅ = suc 1o)
76 0elon 6243 . . . . . . . . . . . . . . . 16 ∅ ∈ On
77 1on 8108 . . . . . . . . . . . . . . . 16 1o ∈ On
78 suc11 6293 . . . . . . . . . . . . . . . 16 ((∅ ∈ On ∧ 1o ∈ On) → (suc ∅ = suc 1o ↔ ∅ = 1o))
7976, 77, 78mp2an 690 . . . . . . . . . . . . . . 15 (suc ∅ = suc 1o ↔ ∅ = 1o)
8075, 79bitri 277 . . . . . . . . . . . . . 14 (1o = 2o ↔ ∅ = 1o)
8143, 80nemtbir 3112 . . . . . . . . . . . . 13 ¬ 1o = 2o
82 eqtr2 2842 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
8381, 82mto 199 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
84 2on 8110 . . . . . . . . . . . . . . . . 17 2o ∈ On
8584elexi 3513 . . . . . . . . . . . . . . . 16 2o ∈ V
8685prid2 4698 . . . . . . . . . . . . . . 15 2o ∈ {1o, 2o}
8786nosgnn0i 33166 . . . . . . . . . . . . . 14 ∅ ≠ 2o
8887neii 3018 . . . . . . . . . . . . 13 ¬ ∅ = 2o
89 eqtr2 2842 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
9088, 89mto 199 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
9172, 83, 903pm3.2i 1335 . . . . . . . . . . 11 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
92 fvex 6682 . . . . . . . . . . . . . 14 ((𝐴𝑋)‘𝑥) ∈ V
9392, 92brtp 32985 . . . . . . . . . . . . 13 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
94 3oran 1105 . . . . . . . . . . . . 13 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9593, 94bitri 277 . . . . . . . . . . . 12 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9695con2bii 360 . . . . . . . . . . 11 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
9791, 96mpbi 232 . . . . . . . . . 10 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
98 simpl2l 1222 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → (𝐴𝑋) = (𝐵𝑋))
9998adantr 483 . . . . . . . . . . . 12 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
10099fveq1d 6671 . . . . . . . . . . 11 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
101100breq2d 5077 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
10297, 101mtbii 328 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
103 fvres 6688 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
104 fvres 6688 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
105103, 104breq12d 5078 . . . . . . . . . 10 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
106105notbid 320 . . . . . . . . 9 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
107102, 106syl5ibcom 247 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
10844intnanr 490 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = ∅)
10944intnanr 490 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = 2o)
11081intnan 489 . . . . . . . . . . . 12 ¬ (∅ = ∅ ∧ 1o = 2o)
111108, 109, 1103pm3.2i 1335 . . . . . . . . . . 11 (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o))
112 0ex 5210 . . . . . . . . . . . . . 14 ∅ ∈ V
113112, 41brtp 32985 . . . . . . . . . . . . 13 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)))
114 3oran 1105 . . . . . . . . . . . . 13 (((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
115113, 114bitri 277 . . . . . . . . . . . 12 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
116115con2bii 360 . . . . . . . . . . 11 ((¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o)
117111, 116mpbi 232 . . . . . . . . . 10 ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o
11845, 46breq12d 5078 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o))
119117, 118mtbiri 329 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
120 fveq2 6669 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
121 fveq2 6669 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
122120, 121breq12d 5078 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
123122notbid 320 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
124119, 123syl5ibrcom 249 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
125107, 124jaod 855 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝑥𝑋𝑥 = 𝑋) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12669, 125sylbid 242 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12767, 126mpd 15 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
128127expr 459 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
129128ralrimiva 3182 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
13040, 129mtand 814 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = 1o)
131 nofv 33164 . . . 4 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
13232, 131syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
133 3orrot 1088 . . . 4 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅))
134 3orrot 1088 . . . 4 (((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
135133, 134bitri 277 . . 3 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
136132, 135sylib 220 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
13731, 130, 136ecase23d 1469 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935  c0 4290  {ctp 4570  cop 4572   class class class wbr 5065   Or wor 5472  dom cdm 5554  cres 5556  Rel wrel 5559  Oncon0 6190  suc csuc 6192  Fun wfun 6348  cfv 6354  1oc1o 8094  2oc2o 8095   No csur 33147   <s cslt 33148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-1o 8101  df-2o 8102  df-no 33150  df-slt 33151
This theorem is referenced by:  nosupbnd1lem4  33211
  Copyright terms: Public domain W3C validator