Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noprefixmo Structured version   Visualization version   GIF version

Theorem noprefixmo 33204
Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 26-Nov-2021.)
Assertion
Ref Expression
noprefixmo (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥

Proof of Theorem noprefixmo
Dummy variables 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3369 . . . 4 (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) ↔ (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
2 simplrr 776 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑝𝐴)
3 simplrl 775 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑢𝐴)
42, 3ifcld 4514 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴)
5 iftrue 4475 . . . . . . . . . . . 12 (𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝)
65adantr 483 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝)
7 simpll 765 . . . . . . . . . . . . . 14 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐴 No )
87, 3sseldd 3970 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑢 No )
97, 2sseldd 3970 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑝 No )
10 sltso 33183 . . . . . . . . . . . . . 14 <s Or No
11 soasym 5506 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑢 No 𝑝 No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
1210, 11mpan 688 . . . . . . . . . . . . 13 ((𝑢 No 𝑝 No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
138, 9, 12syl2anc 586 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
1413impcom 410 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑢)
156, 14eqnbrtrd 5086 . . . . . . . . . 10 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
16 iffalse 4478 . . . . . . . . . . . 12 𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢)
1716adantr 483 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢)
18 sonr 5498 . . . . . . . . . . . . . 14 (( <s Or No 𝑢 No ) → ¬ 𝑢 <s 𝑢)
1910, 18mpan 688 . . . . . . . . . . . . 13 (𝑢 No → ¬ 𝑢 <s 𝑢)
208, 19syl 17 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ 𝑢 <s 𝑢)
2120adantl 484 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑢)
2217, 21eqnbrtrd 5086 . . . . . . . . . 10 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
2315, 22pm2.61ian 810 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
24 sonr 5498 . . . . . . . . . . . . . 14 (( <s Or No 𝑝 No ) → ¬ 𝑝 <s 𝑝)
2510, 24mpan 688 . . . . . . . . . . . . 13 (𝑝 No → ¬ 𝑝 <s 𝑝)
269, 25syl 17 . . . . . . . . . . . 12 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ 𝑝 <s 𝑝)
2726adantl 484 . . . . . . . . . . 11 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑝)
286, 27eqnbrtrd 5086 . . . . . . . . . 10 ((𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
29 simpl 485 . . . . . . . . . . 11 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑝)
3017, 29eqnbrtrd 5086 . . . . . . . . . 10 ((¬ 𝑢 <s 𝑝 ∧ ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
3128, 30pm2.61ian 810 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
32 simpr1 1190 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴)
33 simprl2 1215 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
3433adantr 483 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
35 simpr2 1191 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)
36 breq1 5071 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑢 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢))
3736notbid 320 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑢 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢))
38 reseq1 5849 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
3938eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))
4037, 39imbi12d 347 . . . . . . . . . . . . 13 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
4140rspcv 3620 . . . . . . . . . . . 12 (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
4232, 34, 35, 41syl3c 66 . . . . . . . . . . 11 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
43 simprr2 1218 . . . . . . . . . . . . 13 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
4443adantr 483 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
45 simpr3 1192 . . . . . . . . . . . 12 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)
46 breq1 5071 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑝 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝))
4746notbid 320 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑝 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝))
4838eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))
4947, 48imbi12d 347 . . . . . . . . . . . . 13 (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
5049rspcv 3620 . . . . . . . . . . . 12 (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))))
5132, 44, 45, 50syl3c 66 . . . . . . . . . . 11 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))
5242, 51eqtr4d 2861 . . . . . . . . . 10 ((((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5352ex 415 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
544, 23, 31, 53mp3and 1460 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5554fveq1d 6674 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺))
56 simprl1 1214 . . . . . . . . . 10 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢)
57 sucidg 6271 . . . . . . . . . 10 (𝐺 ∈ dom 𝑢𝐺 ∈ suc 𝐺)
5856, 57syl 17 . . . . . . . . 9 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ suc 𝐺)
5958fvresd 6692 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢𝐺))
60 simprl3 1216 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢𝐺) = 𝑥)
6159, 60eqtrd 2858 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = 𝑥)
6258fvresd 6692 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝𝐺))
63 simprr3 1219 . . . . . . . 8 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑝𝐺) = 𝑦)
6462, 63eqtrd 2858 . . . . . . 7 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = 𝑦)
6555, 61, 643eqtr3d 2866 . . . . . 6 (((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝑥 = 𝑦)
6665ex 415 . . . . 5 ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6766rexlimdvva 3296 . . . 4 (𝐴 No → (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
681, 67syl5bir 245 . . 3 (𝐴 No → ((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6968alrimivv 1929 . 2 (𝐴 No → ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
70 eqeq2 2835 . . . . . 6 (𝑥 = 𝑦 → ((𝑢𝐺) = 𝑥 ↔ (𝑢𝐺) = 𝑦))
71703anbi3d 1438 . . . . 5 (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
7271rexbidv 3299 . . . 4 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
73 dmeq 5774 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
7473eleq2d 2900 . . . . . 6 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
75 breq2 5072 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑣 <s 𝑢𝑣 <s 𝑝))
7675notbid 320 . . . . . . . 8 (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝))
77 reseq1 5849 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
7877eqeq1d 2825 . . . . . . . 8 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
7976, 78imbi12d 347 . . . . . . 7 (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
8079ralbidv 3199 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
81 fveq1 6671 . . . . . . 7 (𝑢 = 𝑝 → (𝑢𝐺) = (𝑝𝐺))
8281eqeq1d 2825 . . . . . 6 (𝑢 = 𝑝 → ((𝑢𝐺) = 𝑦 ↔ (𝑝𝐺) = 𝑦))
8374, 80, 823anbi123d 1432 . . . . 5 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
8483cbvrexvw 3452 . . . 4 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))
8572, 84syl6bb 289 . . 3 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
8685mo4 2650 . 2 (∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
8769, 86sylibr 236 1 (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  wral 3140  wrex 3141  wss 3938  ifcif 4469   class class class wbr 5068   Or wor 5475  dom cdm 5557  cres 5559  suc csuc 6195  cfv 6357   No csur 33149   <s cslt 33150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-1o 8104  df-2o 8105  df-no 33152  df-slt 33153
This theorem is referenced by:  nosupno  33205  nosupfv  33208
  Copyright terms: Public domain W3C validator