Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noreson Structured version   Visualization version   GIF version

Theorem noreson 33169
Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
noreson ((𝐴 No 𝐵 ∈ On) → (𝐴𝐵) ∈ No )

Proof of Theorem noreson
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elno 33155 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
2 onin 6224 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵) ∈ On)
3 fresin 6549 . . . . . . . 8 (𝐴:𝑥⟶{1o, 2o} → (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o})
4 feq2 6498 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → ((𝐴𝐵):𝑦⟶{1o, 2o} ↔ (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o}))
54rspcev 3625 . . . . . . . 8 (((𝑥𝐵) ∈ On ∧ (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
62, 3, 5syl2an 597 . . . . . . 7 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴:𝑥⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
76an32s 650 . . . . . 6 (((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
87ex 415 . . . . 5 ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o}))
98rexlimiva 3283 . . . 4 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o}))
109imp 409 . . 3 ((∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
111, 10sylanb 583 . 2 ((𝐴 No 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
12 elno 33155 . 2 ((𝐴𝐵) ∈ No ↔ ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
1311, 12sylibr 236 1 ((𝐴 No 𝐵 ∈ On) → (𝐴𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wrex 3141  cin 3937  {cpr 4571  cres 5559  Oncon0 6193  wf 6353  1oc1o 8097  2oc2o 8098   No csur 33149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-no 33152
This theorem is referenced by:  sltres  33171  nodenselem6  33195  noresle  33202  nosupbnd1lem1  33210  nosupbnd1lem2  33211  nosupbnd1lem6  33215  nosupbnd1  33216  nosupbnd2lem1  33217  nosupbnd2  33218  noetalem3  33221
  Copyright terms: Public domain W3C validator