HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1 Structured version   Visualization version   GIF version

Theorem norm1 27296
Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
norm1 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)

Proof of Theorem norm1
StepHypRef Expression
1 normcl 27172 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21adantr 479 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
3 normne0 27177 . . . . . 6 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
43biimpar 500 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
52, 4rereccld 10701 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
65recnd 9924 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
7 simpl 471 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
8 norm-iii 27187 . . 3 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (norm‘((1 / (norm𝐴)) · 𝐴)) = ((abs‘(1 / (norm𝐴))) · (norm𝐴)))
96, 7, 8syl2anc 690 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = ((abs‘(1 / (norm𝐴))) · (norm𝐴)))
10 normgt0 27174 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
1110biimpa 499 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
12 1re 9895 . . . . . 6 1 ∈ ℝ
13 0le1 10400 . . . . . 6 0 ≤ 1
14 divge0 10741 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → 0 ≤ (1 / (norm𝐴)))
1512, 13, 14mpanl12 713 . . . . 5 (((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴)) → 0 ≤ (1 / (norm𝐴)))
162, 11, 15syl2anc 690 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
175, 16absidd 13955 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
1817oveq1d 6542 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm𝐴)) = ((1 / (norm𝐴)) · (norm𝐴)))
191recnd 9924 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
2019adantr 479 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
2120, 4recid2d 10646 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
229, 18, 213eqtrd 2647 1 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   · cmul 9797   < clt 9930  cle 9931   / cdiv 10533  abscabs 13768  chil 26966   · csm 26968  normcno 26970  0c0v 26971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-hv0cl 27050  ax-hfvmul 27052  ax-hvmul0 27057  ax-hfi 27126  ax-his1 27129  ax-his3 27131  ax-his4 27132
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-hnorm 27015
This theorem is referenced by:  norm1exi  27297  nmlnop0iALT  28044  nmbdoplbi  28073  nmcoplbi  28077  nmbdfnlbi  28098  nmcfnlbi  28101  branmfn  28154
  Copyright terms: Public domain W3C validator