HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1exi Structured version   Visualization version   GIF version

Theorem norm1exi 27947
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm1ex.1 𝐻S
Assertion
Ref Expression
norm1exi (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Distinct variable groups:   𝑥,𝐻   𝑦,𝐻

Proof of Theorem norm1exi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2858 . . 3 (𝑥 = 𝑧 → (𝑥 ≠ 0𝑧 ≠ 0))
21cbvrexv 3165 . 2 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3 norm1ex.1 . . . . . . . . . . 11 𝐻S
43sheli 27911 . . . . . . . . . 10 (𝑧𝐻𝑧 ∈ ℋ)
5 normcl 27822 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
64, 5syl 17 . . . . . . . . 9 (𝑧𝐻 → (norm𝑧) ∈ ℝ)
76adantr 481 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ∈ ℝ)
8 normne0 27827 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
94, 8syl 17 . . . . . . . . 9 (𝑧𝐻 → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
109biimpar 502 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ≠ 0)
117, 10rereccld 10797 . . . . . . 7 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℝ)
1211recnd 10013 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℂ)
13 simpl 473 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → 𝑧𝐻)
14 shmulcl 27915 . . . . . . 7 ((𝐻S ∧ (1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
153, 14mp3an1 1408 . . . . . 6 (((1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
1612, 13, 15syl2anc 692 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
17 norm1 27946 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
184, 17sylan 488 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
19 fveq2 6150 . . . . . . 7 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → (norm𝑦) = (norm‘((1 / (norm𝑧)) · 𝑧)))
2019eqeq1d 2628 . . . . . 6 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → ((norm𝑦) = 1 ↔ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1))
2120rspcev 3300 . . . . 5 ((((1 / (norm𝑧)) · 𝑧) ∈ 𝐻 ∧ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1) → ∃𝑦𝐻 (norm𝑦) = 1)
2216, 18, 21syl2anc 692 . . . 4 ((𝑧𝐻𝑧 ≠ 0) → ∃𝑦𝐻 (norm𝑦) = 1)
2322rexlimiva 3026 . . 3 (∃𝑧𝐻 𝑧 ≠ 0 → ∃𝑦𝐻 (norm𝑦) = 1)
24 ax-1ne0 9950 . . . . . . . 8 1 ≠ 0
2524neii 2798 . . . . . . 7 ¬ 1 = 0
26 eqeq1 2630 . . . . . . 7 ((norm𝑦) = 1 → ((norm𝑦) = 0 ↔ 1 = 0))
2725, 26mtbiri 317 . . . . . 6 ((norm𝑦) = 1 → ¬ (norm𝑦) = 0)
283sheli 27911 . . . . . . . 8 (𝑦𝐻𝑦 ∈ ℋ)
29 norm-i 27826 . . . . . . . 8 (𝑦 ∈ ℋ → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3028, 29syl 17 . . . . . . 7 (𝑦𝐻 → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3130necon3bbid 2833 . . . . . 6 (𝑦𝐻 → (¬ (norm𝑦) = 0 ↔ 𝑦 ≠ 0))
3227, 31syl5ib 234 . . . . 5 (𝑦𝐻 → ((norm𝑦) = 1 → 𝑦 ≠ 0))
3332reximia 3008 . . . 4 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦𝐻 𝑦 ≠ 0)
34 neeq1 2858 . . . . 5 (𝑦 = 𝑧 → (𝑦 ≠ 0𝑧 ≠ 0))
3534cbvrexv 3165 . . . 4 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3633, 35sylib 208 . . 3 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑧𝐻 𝑧 ≠ 0)
3723, 36impbii 199 . 2 (∃𝑧𝐻 𝑧 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
382, 37bitri 264 1 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wrex 2913  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   / cdiv 10629  chil 27616   · csm 27618  normcno 27620  0c0v 27621   S csh 27625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-hilex 27696  ax-hfvadd 27697  ax-hv0cl 27700  ax-hfvmul 27702  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his3 27781  ax-his4 27782
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-hnorm 27665  df-sh 27904
This theorem is referenced by:  norm1hex  27948  pjnmopi  28847
  Copyright terms: Public domain W3C validator