HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3adifi Structured version   Visualization version   GIF version

Theorem norm3adifi 27228
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm3adift.1 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3adifi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵)))

Proof of Theorem norm3adifi
StepHypRef Expression
1 oveq1 6534 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
21fveq2d 6092 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)))
32oveq1d 6542 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶))))
43fveq2d 6092 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) = (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶)))))
5 oveq1 6534 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
65fveq2d 6092 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
74, 6breq12d 4590 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵)) ↔ (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))))
8 oveq1 6534 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶))
98fveq2d 6092 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(𝐵 𝐶)) = (norm‘(if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶)))
109oveq2d 6543 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶))) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶))))
1110fveq2d 6092 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶)))) = (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶)))))
12 oveq2 6535 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
1312fveq2d 6092 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1411, 13breq12d 4590 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ↔ (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶)))) ≤ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
15 ifhvhv0 27097 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
16 ifhvhv0 27097 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
17 norm3adift.1 . . 3 𝐶 ∈ ℋ
1815, 16, 17norm3adifii 27223 . 2 (abs‘((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) − (norm‘(if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐶)))) ≤ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
197, 14, 18dedth2h 4089 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  ifcif 4035   class class class wbr 4577  cfv 5790  (class class class)co 6527  cle 9932  cmin 10118  abscabs 13771  chil 26994  normcno 26998  0c0v 26999   cmv 27000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-hfvadd 27075  ax-hvcom 27076  ax-hvass 27077  ax-hv0cl 27078  ax-hvaddid 27079  ax-hfvmul 27080  ax-hvmulid 27081  ax-hvmulass 27082  ax-hvdistr1 27083  ax-hvdistr2 27084  ax-hvmul0 27085  ax-hfi 27154  ax-his1 27157  ax-his2 27158  ax-his3 27159  ax-his4 27160
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-hnorm 27043  df-hvsub 27046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator