HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Visualization version   GIF version

Theorem norm3difi 28851
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3difi (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5 𝐴 ∈ ℋ
2 norm3dif.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubvali 28724 . . . 4 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 norm3dif.3 . . . . . . 7 𝐶 ∈ ℋ
51, 4hvsubvali 28724 . . . . . 6 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
64, 2hvsubvali 28724 . . . . . 6 (𝐶 𝐵) = (𝐶 + (-1 · 𝐵))
75, 6oveq12i 7157 . . . . 5 ((𝐴 𝐶) + (𝐶 𝐵)) = ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵)))
8 neg1cn 11739 . . . . . . 7 -1 ∈ ℂ
98, 4hvmulcli 28718 . . . . . 6 (-1 · 𝐶) ∈ ℋ
108, 2hvmulcli 28718 . . . . . . 7 (-1 · 𝐵) ∈ ℋ
114, 10hvaddcli 28722 . . . . . 6 (𝐶 + (-1 · 𝐵)) ∈ ℋ
121, 9, 11hvassi 28757 . . . . 5 ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵))) = (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))))
139, 4, 10hvassi 28757 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))
149, 4hvcomi 28723 . . . . . . . . . 10 ((-1 · 𝐶) + 𝐶) = (𝐶 + (-1 · 𝐶))
154, 4hvsubvali 28724 . . . . . . . . . 10 (𝐶 𝐶) = (𝐶 + (-1 · 𝐶))
16 hvsubid 28730 . . . . . . . . . . 11 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
174, 16ax-mp 5 . . . . . . . . . 10 (𝐶 𝐶) = 0
1814, 15, 173eqtr2i 2847 . . . . . . . . 9 ((-1 · 𝐶) + 𝐶) = 0
1918oveq1i 7155 . . . . . . . 8 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (0 + (-1 · 𝐵))
20 ax-hv0cl 28707 . . . . . . . . 9 0 ∈ ℋ
2120, 10hvcomi 28723 . . . . . . . 8 (0 + (-1 · 𝐵)) = ((-1 · 𝐵) + 0)
22 ax-hvaddid 28708 . . . . . . . . 9 ((-1 · 𝐵) ∈ ℋ → ((-1 · 𝐵) + 0) = (-1 · 𝐵))
2310, 22ax-mp 5 . . . . . . . 8 ((-1 · 𝐵) + 0) = (-1 · 𝐵)
2419, 21, 233eqtri 2845 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (-1 · 𝐵)
2513, 24eqtr3i 2843 . . . . . 6 ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))) = (-1 · 𝐵)
2625oveq2i 7156 . . . . 5 (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))) = (𝐴 + (-1 · 𝐵))
277, 12, 263eqtri 2845 . . . 4 ((𝐴 𝐶) + (𝐶 𝐵)) = (𝐴 + (-1 · 𝐵))
283, 27eqtr4i 2844 . . 3 (𝐴 𝐵) = ((𝐴 𝐶) + (𝐶 𝐵))
2928fveq2i 6666 . 2 (norm‘(𝐴 𝐵)) = (norm‘((𝐴 𝐶) + (𝐶 𝐵)))
301, 4hvsubcli 28725 . . 3 (𝐴 𝐶) ∈ ℋ
314, 2hvsubcli 28725 . . 3 (𝐶 𝐵) ∈ ℋ
3230, 31norm-ii-i 28841 . 2 (norm‘((𝐴 𝐶) + (𝐶 𝐵))) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
3329, 32eqbrtri 5078 1 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  1c1 10526   + caddc 10528  cle 10664  -cneg 10859  chba 28623   + cva 28624   · csm 28625  normcno 28627  0c0v 28628   cmv 28629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788  ax-his4 28789
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-hnorm 28672  df-hvsub 28675
This theorem is referenced by:  norm3adifii  28852  norm3lem  28853  norm3dif  28854
  Copyright terms: Public domain W3C validator