HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lem Structured version   Visualization version   GIF version

Theorem norm3lem 27855
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
norm3lem.4 𝐷 ∈ ℝ
Assertion
Ref Expression
norm3lem (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)

Proof of Theorem norm3lem
StepHypRef Expression
1 norm3dif.1 . . . 4 𝐴 ∈ ℋ
2 norm3dif.2 . . . 4 𝐵 ∈ ℋ
3 norm3dif.3 . . . 4 𝐶 ∈ ℋ
41, 2, 3norm3difi 27853 . . 3 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
51, 3hvsubcli 27727 . . . . 5 (𝐴 𝐶) ∈ ℋ
65normcli 27837 . . . 4 (norm‘(𝐴 𝐶)) ∈ ℝ
73, 2hvsubcli 27727 . . . . 5 (𝐶 𝐵) ∈ ℋ
87normcli 27837 . . . 4 (norm‘(𝐶 𝐵)) ∈ ℝ
9 norm3lem.4 . . . . 5 𝐷 ∈ ℝ
109rehalfcli 11225 . . . 4 (𝐷 / 2) ∈ ℝ
116, 8, 10, 10lt2addi 10534 . . 3 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2)))
121, 2hvsubcli 27727 . . . . 5 (𝐴 𝐵) ∈ ℋ
1312normcli 27837 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
146, 8readdcli 9997 . . . 4 ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∈ ℝ
1510, 10readdcli 9997 . . . 4 ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ
1613, 14, 15lelttri 10108 . . 3 (((norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∧ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
174, 11, 16sylancr 694 . 2 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
1810recni 9996 . . . 4 (𝐷 / 2) ∈ ℂ
19182timesi 11091 . . 3 (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2))
209recni 9996 . . . 4 𝐷 ∈ ℂ
21 2cn 11035 . . . 4 2 ∈ ℂ
22 2ne0 11057 . . . 4 2 ≠ 0
2320, 21, 22divcan2i 10712 . . 3 (2 · (𝐷 / 2)) = 𝐷
2419, 23eqtr3i 2645 . 2 ((𝐷 / 2) + (𝐷 / 2)) = 𝐷
2517, 24syl6breq 4654 1 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879   + caddc 9883   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  chil 27625  normcno 27629   cmv 27631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hfvadd 27706  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr2 27715  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790  ax-his4 27791
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-hnorm 27674  df-hvsub 27677
This theorem is referenced by:  norm3lemt  27858
  Copyright terms: Public domain W3C validator