HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lemt Structured version   Visualization version   GIF version

Theorem norm3lemt 27855
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
norm3lemt (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))

Proof of Theorem norm3lemt
StepHypRef Expression
1 oveq1 6611 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
21fveq2d 6152 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)))
32breq1d 4623 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2)))
43anbi1d 740 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2))))
5 oveq1 6611 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
65fveq2d 6152 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
76breq1d 4623 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷))
84, 7imbi12d 334 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷)))
9 oveq2 6612 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐶 𝐵) = (𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))
109fveq2d 6152 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(𝐶 𝐵)) = (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))))
1110breq1d 4623 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(𝐶 𝐵)) < (𝐷 / 2) ↔ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
1211anbi2d 739 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
13 oveq2 6612 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
1413fveq2d 6152 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1514breq1d 4623 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷))
1612, 15imbi12d 334 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
17 oveq2 6612 . . . . . 6 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1817fveq2d 6152 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))))
1918breq1d 4623 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2)))
20 oveq1 6611 . . . . . 6 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2120fveq2d 6152 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) = (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2221breq1d 4623 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
2319, 22anbi12d 746 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
2423imbi1d 331 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
25 oveq1 6611 . . . . 5 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))
2625breq2d 4625 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2725breq2d 4625 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2826, 27anbi12d 746 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))))
29 breq2 4617 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2)))
3028, 29imbi12d 334 . 2 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))))
31 ifhvhv0 27725 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
32 ifhvhv0 27725 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
33 ifhvhv0 27725 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
34 2re 11034 . . . 4 2 ∈ ℝ
3534elimel 4122 . . 3 if(𝐷 ∈ ℝ, 𝐷, 2) ∈ ℝ
3631, 32, 33, 35norm3lem 27852 . 2 (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))
378, 16, 24, 30, 36dedth4h 4114 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  ifcif 4058   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879   < clt 10018   / cdiv 10628  2c2 11014  chil 27622  normcno 27626  0c0v 27627   cmv 27628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hfvadd 27703  ax-hvcom 27704  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvmulass 27710  ax-hvdistr2 27712  ax-hvmul0 27713  ax-hfi 27782  ax-his1 27785  ax-his2 27786  ax-his3 27787  ax-his4 27788
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-hnorm 27671  df-hvsub 27674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator