HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normcl Structured version   Visualization version   GIF version

Theorem normcl 28110
Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normcl (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)

Proof of Theorem normcl
StepHypRef Expression
1 normf 28108 . 2 norm: ℋ⟶ℝ
21ffvelrni 6398 1 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2030  cfv 5926  cr 9973  chil 27904  normcno 27908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hv0cl 27988  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-hnorm 27953
This theorem is referenced by:  norm-i  28114  normcli  28116  normpyc  28131  hhph  28163  bcs2  28167  norm1  28234  norm1exi  28235  pjhthlem1  28378  chscllem2  28625  pjige0i  28677  pjnorm2  28714  nmopsetretALT  28850  nmopub2tALT  28896  nmopge0  28898  unopnorm  28904  nmfnleub2  28913  eigvalcl  28948  nmlnop0iALT  28982  nmbdoplbi  29011  nmcexi  29013  nmcopexi  29014  nmcoplbi  29015  nmophmi  29018  lnconi  29020  lnopconi  29021  nmbdfnlbi  29036  nmcfnlbi  29039  riesz4i  29050  riesz1  29052  cnlnadjlem2  29055  cnlnadjlem7  29060  nmopadjlem  29076  nmoptrii  29081  nmopcoi  29082  nmopcoadji  29088  branmfn  29092  brabn  29093  leopnmid  29125  pjnmopi  29135  pjnormssi  29155  pjssposi  29159  hstle1  29213  hst1h  29214  hstle  29217  hstles  29218  hstoh  29219  strlem1  29237  strlem3a  29239  strlem5  29242  hstrlem6  29251  jplem1  29255  cdj1i  29420  cdj3lem1  29421  cdj3lem2b  29424  cdj3lem3b  29427  cdj3i  29428
  Copyright terms: Public domain W3C validator