HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem1 Structured version   Visualization version   GIF version

Theorem normlem1 28814
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem1.4 𝑅 ∈ ℝ
normlem1.5 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem1
StepHypRef Expression
1 normlem1.1 . . . 4 𝑆 ∈ ℂ
2 normlem1.4 . . . . 5 𝑅 ∈ ℝ
32recni 10643 . . . 4 𝑅 ∈ ℂ
41, 3mulcli 10636 . . 3 (𝑆 · 𝑅) ∈ ℂ
5 normlem1.2 . . 3 𝐹 ∈ ℋ
6 normlem1.3 . . 3 𝐺 ∈ ℋ
74, 5, 6normlem0 28813 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))))
81, 3cjmuli 14536 . . . . . . . 8 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅))
93cjrebi 14521 . . . . . . . . . 10 (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅)
102, 9mpbi 231 . . . . . . . . 9 (∗‘𝑅) = 𝑅
1110oveq2i 7156 . . . . . . . 8 ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅)
128, 11eqtri 2841 . . . . . . 7 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅)
1312negeqi 10867 . . . . . 6 -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅)
141cjcli 14516 . . . . . . 7 (∗‘𝑆) ∈ ℂ
1514, 3mulneg2i 11075 . . . . . 6 ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅)
1613, 15eqtr4i 2844 . . . . 5 -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅)
1716oveq1i 7155 . . . 4 (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
1817oveq2i 7156 . . 3 ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)))
191, 3mulneg2i 11075 . . . . . 6 (𝑆 · -𝑅) = -(𝑆 · 𝑅)
2019eqcomi 2827 . . . . 5 -(𝑆 · 𝑅) = (𝑆 · -𝑅)
2120oveq1i 7155 . . . 4 (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
228oveq2i 7156 . . . . . . 7 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅)))
233cjcli 14516 . . . . . . . . 9 (∗‘𝑅) ∈ ℂ
241, 3, 14, 23mul4i 10825 . . . . . . . 8 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅)))
25 normlem1.5 . . . . . . . . . . . 12 (abs‘𝑆) = 1
2625oveq1i 7155 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (1↑2)
271absvalsqi 14741 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆))
28 sq1 13546 . . . . . . . . . . 11 (1↑2) = 1
2926, 27, 283eqtr3i 2849 . . . . . . . . . 10 (𝑆 · (∗‘𝑆)) = 1
3010oveq2i 7156 . . . . . . . . . 10 (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅)
3129, 30oveq12i 7157 . . . . . . . . 9 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅))
323, 3mulcli 10636 . . . . . . . . . 10 (𝑅 · 𝑅) ∈ ℂ
3332mulid2i 10634 . . . . . . . . 9 (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅)
3431, 33eqtri 2841 . . . . . . . 8 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅)
3524, 34eqtri 2841 . . . . . . 7 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅)
3622, 35eqtri 2841 . . . . . 6 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅)
373sqvali 13531 . . . . . 6 (𝑅↑2) = (𝑅 · 𝑅)
3836, 37eqtr4i 2844 . . . . 5 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2)
3938oveq1i 7155 . . . 4 (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
4021, 39oveq12i 7157 . . 3 ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
4118, 40oveq12i 7157 . 2 (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
427, 41eqtri 2841 1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  1c1 10526   + caddc 10528   · cmul 10530  -cneg 10859  2c2 11680  cexp 13417  ccj 14443  abscabs 14581  chba 28623   · csm 28625   ·ih csp 28626   cmv 28629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-hfvadd 28704  ax-hfvmul 28709  ax-hvmulass 28711  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-hvsub 28675
This theorem is referenced by:  normlem4  28817
  Copyright terms: Public domain W3C validator