HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem1 Structured version   Visualization version   GIF version

Theorem normlem1 27828
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem1.4 𝑅 ∈ ℝ
normlem1.5 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem1
StepHypRef Expression
1 normlem1.1 . . . 4 𝑆 ∈ ℂ
2 normlem1.4 . . . . 5 𝑅 ∈ ℝ
32recni 9999 . . . 4 𝑅 ∈ ℂ
41, 3mulcli 9992 . . 3 (𝑆 · 𝑅) ∈ ℂ
5 normlem1.2 . . 3 𝐹 ∈ ℋ
6 normlem1.3 . . 3 𝐺 ∈ ℋ
74, 5, 6normlem0 27827 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))))
81, 3cjmuli 13866 . . . . . . . 8 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅))
93cjrebi 13851 . . . . . . . . . 10 (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅)
102, 9mpbi 220 . . . . . . . . 9 (∗‘𝑅) = 𝑅
1110oveq2i 6618 . . . . . . . 8 ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅)
128, 11eqtri 2643 . . . . . . 7 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅)
1312negeqi 10221 . . . . . 6 -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅)
141cjcli 13846 . . . . . . 7 (∗‘𝑆) ∈ ℂ
1514, 3mulneg2i 10424 . . . . . 6 ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅)
1613, 15eqtr4i 2646 . . . . 5 -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅)
1716oveq1i 6617 . . . 4 (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
1817oveq2i 6618 . . 3 ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)))
191, 3mulneg2i 10424 . . . . . 6 (𝑆 · -𝑅) = -(𝑆 · 𝑅)
2019eqcomi 2630 . . . . 5 -(𝑆 · 𝑅) = (𝑆 · -𝑅)
2120oveq1i 6617 . . . 4 (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
228oveq2i 6618 . . . . . . 7 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅)))
233cjcli 13846 . . . . . . . . 9 (∗‘𝑅) ∈ ℂ
241, 3, 14, 23mul4i 10180 . . . . . . . 8 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅)))
25 normlem1.5 . . . . . . . . . . . 12 (abs‘𝑆) = 1
2625oveq1i 6617 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (1↑2)
271absvalsqi 14069 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆))
28 sq1 12901 . . . . . . . . . . 11 (1↑2) = 1
2926, 27, 283eqtr3i 2651 . . . . . . . . . 10 (𝑆 · (∗‘𝑆)) = 1
3010oveq2i 6618 . . . . . . . . . 10 (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅)
3129, 30oveq12i 6619 . . . . . . . . 9 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅))
323, 3mulcli 9992 . . . . . . . . . 10 (𝑅 · 𝑅) ∈ ℂ
3332mulid2i 9990 . . . . . . . . 9 (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅)
3431, 33eqtri 2643 . . . . . . . 8 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅)
3524, 34eqtri 2643 . . . . . . 7 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅)
3622, 35eqtri 2643 . . . . . 6 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅)
373sqvali 12886 . . . . . 6 (𝑅↑2) = (𝑅 · 𝑅)
3836, 37eqtr4i 2646 . . . . 5 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2)
3938oveq1i 6617 . . . 4 (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
4021, 39oveq12i 6619 . . 3 ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
4118, 40oveq12i 6619 . 2 (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
427, 41eqtri 2643 1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  1c1 9884   + caddc 9886   · cmul 9888  -cneg 10214  2c2 11017  cexp 12803  ccj 13773  abscabs 13911  chil 27637   · csm 27639   ·ih csp 27640   cmv 27643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-hfvadd 27718  ax-hfvmul 27723  ax-hvmulass 27725  ax-hfi 27797  ax-his1 27800  ax-his2 27801  ax-his3 27802
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-hvsub 27689
This theorem is referenced by:  normlem4  27831
  Copyright terms: Public domain W3C validator