HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem3 Structured version   Visualization version   GIF version

Theorem normlem3 28891
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem3.7 𝑅 ∈ ℝ
Assertion
Ref Expression
normlem3 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem3
StepHypRef Expression
1 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
2 normlem3.5 . . . . . . 7 𝐴 = (𝐺 ·ih 𝐺)
3 normlem1.3 . . . . . . . 8 𝐺 ∈ ℋ
43, 3hicli 28860 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
52, 4eqeltri 2911 . . . . . 6 𝐴 ∈ ℂ
6 normlem3.7 . . . . . . . 8 𝑅 ∈ ℝ
76recni 10657 . . . . . . 7 𝑅 ∈ ℂ
87sqcli 13547 . . . . . 6 (𝑅↑2) ∈ ℂ
95, 8mulcli 10650 . . . . 5 (𝐴 · (𝑅↑2)) ∈ ℂ
10 normlem1.1 . . . . . . . 8 𝑆 ∈ ℂ
11 normlem1.2 . . . . . . . 8 𝐹 ∈ ℋ
12 normlem2.4 . . . . . . . 8 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
1310, 11, 3, 12normlem2 28890 . . . . . . 7 𝐵 ∈ ℝ
1413recni 10657 . . . . . 6 𝐵 ∈ ℂ
1514, 7mulcli 10650 . . . . 5 (𝐵 · 𝑅) ∈ ℂ
169, 15addcomi 10833 . . . 4 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2)))
1710cjcli 14530 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
1811, 3hicli 28860 . . . . . . . . . 10 (𝐹 ·ih 𝐺) ∈ ℂ
1917, 18mulcli 10650 . . . . . . . . 9 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
203, 11hicli 28860 . . . . . . . . . 10 (𝐺 ·ih 𝐹) ∈ ℂ
2110, 20mulcli 10650 . . . . . . . . 9 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
2219, 21addcli 10649 . . . . . . . 8 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2322, 7mulneg1i 11088 . . . . . . 7 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2412oveq1i 7168 . . . . . . 7 (𝐵 · 𝑅) = (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2522, 7mulneg2i 11089 . . . . . . 7 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2623, 24, 253eqtr4i 2856 . . . . . 6 (𝐵 · 𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅)
277negcli 10956 . . . . . . 7 -𝑅 ∈ ℂ
2819, 21, 27adddiri 10656 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅))
2917, 18, 27mul32i 10838 . . . . . . 7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
3010, 20, 27mul32i 10838 . . . . . . 7 ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
3129, 30oveq12i 7170 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
3226, 28, 313eqtri 2850 . . . . 5 (𝐵 · 𝑅) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
332oveq2i 7169 . . . . . 6 ((𝑅↑2) · 𝐴) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
348, 5, 33mulcomli 10652 . . . . 5 (𝐴 · (𝑅↑2)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
3532, 34oveq12i 7170 . . . 4 ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2))) = (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
3617, 27mulcli 10650 . . . . . 6 ((∗‘𝑆) · -𝑅) ∈ ℂ
3736, 18mulcli 10650 . . . . 5 (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) ∈ ℂ
3810, 27mulcli 10650 . . . . . 6 (𝑆 · -𝑅) ∈ ℂ
3938, 20mulcli 10650 . . . . 5 ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) ∈ ℂ
408, 4mulcli 10650 . . . . 5 ((𝑅↑2) · (𝐺 ·ih 𝐺)) ∈ ℂ
4137, 39, 40addassi 10653 . . . 4 (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
4216, 35, 413eqtri 2850 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
431, 42oveq12i 7170 . 2 (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
449, 15addcli 10649 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) ∈ ℂ
4511, 11hicli 28860 . . . 4 (𝐹 ·ih 𝐹) ∈ ℂ
461, 45eqeltri 2911 . . 3 𝐶 ∈ ℂ
4744, 46addcomi 10833 . 2 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)))
4839, 40addcli 10649 . . 3 (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) ∈ ℂ
4945, 37, 48addassi 10653 . 2 (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
5043, 47, 493eqtr4i 2856 1 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cc 10537  cr 10538   + caddc 10542   · cmul 10544  -cneg 10873  2c2 11695  cexp 13432  ccj 14457  chba 28698   ·ih csp 28701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hfi 28858  ax-his1 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462
This theorem is referenced by:  normlem4  28892
  Copyright terms: Public domain W3C validator