HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem3 Structured version   Visualization version   GIF version

Theorem normlem3 27839
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem3.7 𝑅 ∈ ℝ
Assertion
Ref Expression
normlem3 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem3
StepHypRef Expression
1 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
2 normlem3.5 . . . . . . 7 𝐴 = (𝐺 ·ih 𝐺)
3 normlem1.3 . . . . . . . 8 𝐺 ∈ ℋ
43, 3hicli 27808 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
52, 4eqeltri 2694 . . . . . 6 𝐴 ∈ ℂ
6 normlem3.7 . . . . . . . 8 𝑅 ∈ ℝ
76recni 10004 . . . . . . 7 𝑅 ∈ ℂ
87sqcli 12892 . . . . . 6 (𝑅↑2) ∈ ℂ
95, 8mulcli 9997 . . . . 5 (𝐴 · (𝑅↑2)) ∈ ℂ
10 normlem1.1 . . . . . . . 8 𝑆 ∈ ℂ
11 normlem1.2 . . . . . . . 8 𝐹 ∈ ℋ
12 normlem2.4 . . . . . . . 8 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
1310, 11, 3, 12normlem2 27838 . . . . . . 7 𝐵 ∈ ℝ
1413recni 10004 . . . . . 6 𝐵 ∈ ℂ
1514, 7mulcli 9997 . . . . 5 (𝐵 · 𝑅) ∈ ℂ
169, 15addcomi 10179 . . . 4 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2)))
1710cjcli 13851 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
1811, 3hicli 27808 . . . . . . . . . 10 (𝐹 ·ih 𝐺) ∈ ℂ
1917, 18mulcli 9997 . . . . . . . . 9 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
203, 11hicli 27808 . . . . . . . . . 10 (𝐺 ·ih 𝐹) ∈ ℂ
2110, 20mulcli 9997 . . . . . . . . 9 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
2219, 21addcli 9996 . . . . . . . 8 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2322, 7mulneg1i 10428 . . . . . . 7 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2412oveq1i 6620 . . . . . . 7 (𝐵 · 𝑅) = (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2522, 7mulneg2i 10429 . . . . . . 7 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2623, 24, 253eqtr4i 2653 . . . . . 6 (𝐵 · 𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅)
277negcli 10301 . . . . . . 7 -𝑅 ∈ ℂ
2819, 21, 27adddiri 10003 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅))
2917, 18, 27mul32i 10184 . . . . . . 7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
3010, 20, 27mul32i 10184 . . . . . . 7 ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
3129, 30oveq12i 6622 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
3226, 28, 313eqtri 2647 . . . . 5 (𝐵 · 𝑅) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
332oveq2i 6621 . . . . . 6 ((𝑅↑2) · 𝐴) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
348, 5, 33mulcomli 9999 . . . . 5 (𝐴 · (𝑅↑2)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
3532, 34oveq12i 6622 . . . 4 ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2))) = (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
3617, 27mulcli 9997 . . . . . 6 ((∗‘𝑆) · -𝑅) ∈ ℂ
3736, 18mulcli 9997 . . . . 5 (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) ∈ ℂ
3810, 27mulcli 9997 . . . . . 6 (𝑆 · -𝑅) ∈ ℂ
3938, 20mulcli 9997 . . . . 5 ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) ∈ ℂ
408, 4mulcli 9997 . . . . 5 ((𝑅↑2) · (𝐺 ·ih 𝐺)) ∈ ℂ
4137, 39, 40addassi 10000 . . . 4 (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
4216, 35, 413eqtri 2647 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
431, 42oveq12i 6622 . 2 (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
449, 15addcli 9996 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) ∈ ℂ
4511, 11hicli 27808 . . . 4 (𝐹 ·ih 𝐹) ∈ ℂ
461, 45eqeltri 2694 . . 3 𝐶 ∈ ℂ
4744, 46addcomi 10179 . 2 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)))
4839, 40addcli 9996 . . 3 (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) ∈ ℂ
4945, 37, 48addassi 10000 . 2 (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
5043, 47, 493eqtr4i 2653 1 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  cc 9886  cr 9887   + caddc 9891   · cmul 9893  -cneg 10219  2c2 11022  cexp 12808  ccj 13778  chil 27646   ·ih csp 27649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-hfi 27806  ax-his1 27809
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783
This theorem is referenced by:  normlem4  27840
  Copyright terms: Public domain W3C validator