Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem8 Structured version   Visualization version   GIF version

Theorem normlem8 28102
 Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1 𝐴 ∈ ℋ
normlem8.2 𝐵 ∈ ℋ
normlem8.3 𝐶 ∈ ℋ
normlem8.4 𝐷 ∈ ℋ
Assertion
Ref Expression
normlem8 ((𝐴 + 𝐵) ·ih (𝐶 + 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))

Proof of Theorem normlem8
StepHypRef Expression
1 normlem8.1 . . . 4 𝐴 ∈ ℋ
2 normlem8.3 . . . 4 𝐶 ∈ ℋ
3 normlem8.4 . . . 4 𝐷 ∈ ℋ
4 his7 28075 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (𝐶 + 𝐷)) = ((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)))
51, 2, 3, 4mp3an 1464 . . 3 (𝐴 ·ih (𝐶 + 𝐷)) = ((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷))
6 normlem8.2 . . . 4 𝐵 ∈ ℋ
7 his7 28075 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (𝐶 + 𝐷)) = ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷)))
86, 2, 3, 7mp3an 1464 . . 3 (𝐵 ·ih (𝐶 + 𝐷)) = ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷))
95, 8oveq12i 6702 . 2 ((𝐴 ·ih (𝐶 + 𝐷)) + (𝐵 ·ih (𝐶 + 𝐷))) = (((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)) + ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷)))
102, 3hvaddcli 28003 . . 3 (𝐶 + 𝐷) ∈ ℋ
11 ax-his2 28068 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ) → ((𝐴 + 𝐵) ·ih (𝐶 + 𝐷)) = ((𝐴 ·ih (𝐶 + 𝐷)) + (𝐵 ·ih (𝐶 + 𝐷))))
121, 6, 10, 11mp3an 1464 . 2 ((𝐴 + 𝐵) ·ih (𝐶 + 𝐷)) = ((𝐴 ·ih (𝐶 + 𝐷)) + (𝐵 ·ih (𝐶 + 𝐷)))
131, 2hicli 28066 . . 3 (𝐴 ·ih 𝐶) ∈ ℂ
146, 3hicli 28066 . . 3 (𝐵 ·ih 𝐷) ∈ ℂ
151, 3hicli 28066 . . 3 (𝐴 ·ih 𝐷) ∈ ℂ
166, 2hicli 28066 . . 3 (𝐵 ·ih 𝐶) ∈ ℂ
1713, 14, 15, 16add42i 10299 . 2 (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)) + ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷)))
189, 12, 173eqtr4i 2683 1 ((𝐴 + 𝐵) ·ih (𝐶 + 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523   ∈ wcel 2030  (class class class)co 6690   + caddc 9977   ℋchil 27904   +ℎ cva 27905   ·ih csp 27907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hfvadd 27985  ax-hfi 28064  ax-his1 28067  ax-his2 28068 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-cj 13883  df-re 13884  df-im 13885 This theorem is referenced by:  normlem9  28103  norm-ii-i  28122  normpythi  28127  normpari  28139  polid2i  28142
 Copyright terms: Public domain W3C validator