HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar Structured version   Visualization version   GIF version

Theorem normpar 28924
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
normpar ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))))

Proof of Theorem normpar
StepHypRef Expression
1 fvoveq1 7171 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
21oveq1d 7163 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
3 fvoveq1 7171 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
43oveq1d 7163 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
52, 4oveq12d 7166 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2)))
6 fveq2 6663 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm𝐴) = (norm‘if(𝐴 ∈ ℋ, 𝐴, 0)))
76oveq1d 7163 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm𝐴)↑2) = ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2))
87oveq2d 7164 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (2 · ((norm𝐴)↑2)) = (2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)))
98oveq1d 7163 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm𝐵)↑2))))
105, 9eqeq12d 2835 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2)) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm𝐵)↑2)))))
11 oveq2 7156 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
1211fveq2d 6667 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1312oveq1d 7163 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
14 oveq2 7156 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1514fveq2d 6667 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1615oveq1d 7163 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
1713, 16oveq12d 7166 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
18 fveq2 6663 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm𝐵) = (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
1918oveq1d 7163 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm𝐵)↑2) = ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))
2019oveq2d 7164 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (2 · ((norm𝐵)↑2)) = (2 · ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
2120oveq2d 7164 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm𝐵)↑2))) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))))
2217, 21eqeq12d 2835 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2)) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm𝐵)↑2))) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))))
23 ifhvhv0 28791 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
24 ifhvhv0 28791 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
2523, 24normpari 28923 . 2 (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) + ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) = ((2 · ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2)) + (2 · ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
2610, 22, 25dedth2h 4522 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  ifcif 4465  cfv 6348  (class class class)co 7148   + caddc 10532   · cmul 10534  2c2 11684  cexp 13421  chba 28688   + cva 28689  normcno 28692  0c0v 28693   cmv 28694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-hfvadd 28769  ax-hv0cl 28772  ax-hfvmul 28774  ax-hvmul0 28779  ax-hfi 28848  ax-his1 28851  ax-his2 28852  ax-his3 28853  ax-his4 28854
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-hnorm 28737  df-hvsub 28740
This theorem is referenced by:  hhph  28947
  Copyright terms: Public domain W3C validator