HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Structured version   Visualization version   GIF version

Theorem normpar2i 28927
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1 𝐴 ∈ ℋ
normpar2.2 𝐵 ∈ ℋ
normpar2.3 𝐶 ∈ ℋ
Assertion
Ref Expression
normpar2i ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))

Proof of Theorem normpar2i
StepHypRef Expression
1 normpar2.1 . . . . . . 7 𝐴 ∈ ℋ
2 normpar2.2 . . . . . . 7 𝐵 ∈ ℋ
31, 2hvaddcli 28789 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
4 2cn 11706 . . . . . . 7 2 ∈ ℂ
5 normpar2.3 . . . . . . 7 𝐶 ∈ ℋ
64, 5hvmulcli 28785 . . . . . 6 (2 · 𝐶) ∈ ℋ
73, 6hvsubcli 28792 . . . . 5 ((𝐴 + 𝐵) − (2 · 𝐶)) ∈ ℋ
87normcli 28902 . . . 4 (norm‘((𝐴 + 𝐵) − (2 · 𝐶))) ∈ ℝ
98resqcli 13543 . . 3 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℝ
109recni 10649 . 2 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℂ
111, 2hvsubcli 28792 . . . . 5 (𝐴 𝐵) ∈ ℋ
1211normcli 28902 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
1312resqcli 13543 . . 3 ((norm‘(𝐴 𝐵))↑2) ∈ ℝ
1413recni 10649 . 2 ((norm‘(𝐴 𝐵))↑2) ∈ ℂ
15 4cn 11716 . . . . 5 4 ∈ ℂ
161, 5hvsubcli 28792 . . . . . . . 8 (𝐴 𝐶) ∈ ℋ
1716normcli 28902 . . . . . . 7 (norm‘(𝐴 𝐶)) ∈ ℝ
1817resqcli 13543 . . . . . 6 ((norm‘(𝐴 𝐶))↑2) ∈ ℝ
1918recni 10649 . . . . 5 ((norm‘(𝐴 𝐶))↑2) ∈ ℂ
2015, 19mulcli 10642 . . . 4 (4 · ((norm‘(𝐴 𝐶))↑2)) ∈ ℂ
212, 5hvsubcli 28792 . . . . . . . 8 (𝐵 𝐶) ∈ ℋ
2221normcli 28902 . . . . . . 7 (norm‘(𝐵 𝐶)) ∈ ℝ
2322resqcli 13543 . . . . . 6 ((norm‘(𝐵 𝐶))↑2) ∈ ℝ
2423recni 10649 . . . . 5 ((norm‘(𝐵 𝐶))↑2) ∈ ℂ
2515, 24mulcli 10642 . . . 4 (4 · ((norm‘(𝐵 𝐶))↑2)) ∈ ℂ
26 2ne0 11735 . . . 4 2 ≠ 0
2720, 25, 4, 26divdiri 11391 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2))
2820, 25addcomi 10825 . . . . . . 7 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
29 neg1cn 11745 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
3029, 6hvmulcli 28785 . . . . . . . . . . . . . . 15 (-1 · (2 · 𝐶)) ∈ ℋ
3129, 11hvmulcli 28785 . . . . . . . . . . . . . . 15 (-1 · (𝐴 𝐵)) ∈ ℋ
323, 30, 31hvadd32i 28825 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
333, 6hvsubvali 28791 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) − (2 · 𝐶)) = ((𝐴 + 𝐵) + (-1 · (2 · 𝐶)))
3433oveq1i 7160 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵)))
354, 2hvmulcli 28785 . . . . . . . . . . . . . . . 16 (2 · 𝐵) ∈ ℋ
3635, 6hvsubvali 28791 . . . . . . . . . . . . . . 15 ((2 · 𝐵) − (2 · 𝐶)) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
371, 2hvcomi 28790 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = (𝐵 + 𝐴)
381, 2hvnegdii 28833 . . . . . . . . . . . . . . . . . 18 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
3937, 38oveq12i 7162 . . . . . . . . . . . . . . . . 17 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = ((𝐵 + 𝐴) + (𝐵 𝐴))
402, 1hvsubcan2i 28835 . . . . . . . . . . . . . . . . 17 ((𝐵 + 𝐴) + (𝐵 𝐴)) = (2 · 𝐵)
4139, 40eqtri 2844 . . . . . . . . . . . . . . . 16 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = (2 · 𝐵)
4241oveq1i 7160 . . . . . . . . . . . . . . 15 (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶))) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
4336, 42eqtr4i 2847 . . . . . . . . . . . . . 14 ((2 · 𝐵) − (2 · 𝐶)) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
4432, 34, 433eqtr4i 2854 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = ((2 · 𝐵) − (2 · 𝐶))
457, 11hvsubvali 28791 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵)))
464, 2, 5hvsubdistr1i 28823 . . . . . . . . . . . . 13 (2 · (𝐵 𝐶)) = ((2 · 𝐵) − (2 · 𝐶))
4744, 45, 463eqtr4i 2854 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (2 · (𝐵 𝐶))
4847fveq2i 6667 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (norm‘(2 · (𝐵 𝐶)))
494, 21norm-iii-i 28910 . . . . . . . . . . 11 (norm‘(2 · (𝐵 𝐶))) = ((abs‘2) · (norm‘(𝐵 𝐶)))
50 0le2 11733 . . . . . . . . . . . . 13 0 ≤ 2
51 2re 11705 . . . . . . . . . . . . . 14 2 ∈ ℝ
5251absidi 14731 . . . . . . . . . . . . 13 (0 ≤ 2 → (abs‘2) = 2)
5350, 52ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
5453oveq1i 7160 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐵 𝐶))) = (2 · (norm‘(𝐵 𝐶)))
5548, 49, 543eqtri 2848 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (2 · (norm‘(𝐵 𝐶)))
5655oveq1i 7160 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐵 𝐶)))↑2)
5722recni 10649 . . . . . . . . . 10 (norm‘(𝐵 𝐶)) ∈ ℂ
584, 57sqmuli 13541 . . . . . . . . 9 ((2 · (norm‘(𝐵 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐵 𝐶))↑2))
59 sq2 13554 . . . . . . . . . 10 (2↑2) = 4
6059oveq1i 7160 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐵 𝐶))↑2)) = (4 · ((norm‘(𝐵 𝐶))↑2))
6156, 58, 603eqtri 2848 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐵 𝐶))↑2))
621, 2hvsubcan2i 28835 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
6362oveq1i 7160 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶))) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
643, 30, 11hvadd32i 28825 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶)))
654, 1hvmulcli 28785 . . . . . . . . . . . . . . 15 (2 · 𝐴) ∈ ℋ
6665, 6hvsubvali 28791 . . . . . . . . . . . . . 14 ((2 · 𝐴) − (2 · 𝐶)) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
6763, 64, 663eqtr4i 2854 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = ((2 · 𝐴) − (2 · 𝐶))
6833oveq1i 7160 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵))
694, 1, 5hvsubdistr1i 28823 . . . . . . . . . . . . 13 (2 · (𝐴 𝐶)) = ((2 · 𝐴) − (2 · 𝐶))
7067, 68, 693eqtr4i 2854 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (2 · (𝐴 𝐶))
7170fveq2i 6667 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (norm‘(2 · (𝐴 𝐶)))
724, 16norm-iii-i 28910 . . . . . . . . . . 11 (norm‘(2 · (𝐴 𝐶))) = ((abs‘2) · (norm‘(𝐴 𝐶)))
7353oveq1i 7160 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐴 𝐶))) = (2 · (norm‘(𝐴 𝐶)))
7471, 72, 733eqtri 2848 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (2 · (norm‘(𝐴 𝐶)))
7574oveq1i 7160 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐴 𝐶)))↑2)
7617recni 10649 . . . . . . . . . 10 (norm‘(𝐴 𝐶)) ∈ ℂ
774, 76sqmuli 13541 . . . . . . . . 9 ((2 · (norm‘(𝐴 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐴 𝐶))↑2))
7859oveq1i 7160 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐴 𝐶))↑2)) = (4 · ((norm‘(𝐴 𝐶))↑2))
7975, 77, 783eqtri 2848 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐴 𝐶))↑2))
8061, 79oveq12i 7162 . . . . . . 7 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
8128, 80eqtr4i 2847 . . . . . 6 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2))
827, 11normpari 28925 . . . . . 6 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8381, 82eqtri 2844 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8483oveq1i 7160 . . . 4 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2)
854, 10mulcli 10642 . . . . 5 (2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) ∈ ℂ
864, 14mulcli 10642 . . . . 5 (2 · ((norm‘(𝐴 𝐵))↑2)) ∈ ℂ
8785, 86, 4, 26divdiri 11391 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2))
8810, 4, 26divcan3i 11380 . . . . 5 ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) = ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)
8914, 4, 26divcan3i 11380 . . . . 5 ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2) = ((norm‘(𝐴 𝐵))↑2)
9088, 89oveq12i 7162 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2)) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9184, 87, 903eqtri 2848 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9215, 19, 4, 26div23i 11392 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐴 𝐶))↑2))
93 4d2e2 11801 . . . . . 6 (4 / 2) = 2
9493oveq1i 7160 . . . . 5 ((4 / 2) · ((norm‘(𝐴 𝐶))↑2)) = (2 · ((norm‘(𝐴 𝐶))↑2))
9592, 94eqtri 2844 . . . 4 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐴 𝐶))↑2))
9615, 24, 4, 26div23i 11392 . . . . 5 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐵 𝐶))↑2))
9793oveq1i 7160 . . . . 5 ((4 / 2) · ((norm‘(𝐵 𝐶))↑2)) = (2 · ((norm‘(𝐵 𝐶))↑2))
9896, 97eqtri 2844 . . . 4 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐵 𝐶))↑2))
9995, 98oveq12i 7162 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10027, 91, 993eqtr3i 2852 . 2 (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10110, 14, 100mvlladdi 10898 1 ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11686  4c4 11688  cexp 13423  abscabs 14587  chba 28690   + cva 28691   · csm 28692  normcno 28694   cmv 28696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvmulass 28778  ax-hvdistr1 28779  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-hnorm 28739  df-hvsub 28742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator