HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Structured version   Visualization version   GIF version

Theorem normpar2i 27859
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1 𝐴 ∈ ℋ
normpar2.2 𝐵 ∈ ℋ
normpar2.3 𝐶 ∈ ℋ
Assertion
Ref Expression
normpar2i ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))

Proof of Theorem normpar2i
StepHypRef Expression
1 normpar2.1 . . . . . . 7 𝐴 ∈ ℋ
2 normpar2.2 . . . . . . 7 𝐵 ∈ ℋ
31, 2hvaddcli 27721 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
4 2cn 11035 . . . . . . 7 2 ∈ ℂ
5 normpar2.3 . . . . . . 7 𝐶 ∈ ℋ
64, 5hvmulcli 27717 . . . . . 6 (2 · 𝐶) ∈ ℋ
73, 6hvsubcli 27724 . . . . 5 ((𝐴 + 𝐵) − (2 · 𝐶)) ∈ ℋ
87normcli 27834 . . . 4 (norm‘((𝐴 + 𝐵) − (2 · 𝐶))) ∈ ℝ
98resqcli 12889 . . 3 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℝ
109recni 9996 . 2 ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) ∈ ℂ
111, 2hvsubcli 27724 . . . . 5 (𝐴 𝐵) ∈ ℋ
1211normcli 27834 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
1312resqcli 12889 . . 3 ((norm‘(𝐴 𝐵))↑2) ∈ ℝ
1413recni 9996 . 2 ((norm‘(𝐴 𝐵))↑2) ∈ ℂ
15 4cn 11042 . . . . 5 4 ∈ ℂ
161, 5hvsubcli 27724 . . . . . . . 8 (𝐴 𝐶) ∈ ℋ
1716normcli 27834 . . . . . . 7 (norm‘(𝐴 𝐶)) ∈ ℝ
1817resqcli 12889 . . . . . 6 ((norm‘(𝐴 𝐶))↑2) ∈ ℝ
1918recni 9996 . . . . 5 ((norm‘(𝐴 𝐶))↑2) ∈ ℂ
2015, 19mulcli 9989 . . . 4 (4 · ((norm‘(𝐴 𝐶))↑2)) ∈ ℂ
212, 5hvsubcli 27724 . . . . . . . 8 (𝐵 𝐶) ∈ ℋ
2221normcli 27834 . . . . . . 7 (norm‘(𝐵 𝐶)) ∈ ℝ
2322resqcli 12889 . . . . . 6 ((norm‘(𝐵 𝐶))↑2) ∈ ℝ
2423recni 9996 . . . . 5 ((norm‘(𝐵 𝐶))↑2) ∈ ℂ
2515, 24mulcli 9989 . . . 4 (4 · ((norm‘(𝐵 𝐶))↑2)) ∈ ℂ
26 2ne0 11057 . . . 4 2 ≠ 0
2720, 25, 4, 26divdiri 10726 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2))
2820, 25addcomi 10171 . . . . . . 7 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
29 neg1cn 11068 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
3029, 6hvmulcli 27717 . . . . . . . . . . . . . . 15 (-1 · (2 · 𝐶)) ∈ ℋ
3129, 11hvmulcli 27717 . . . . . . . . . . . . . . 15 (-1 · (𝐴 𝐵)) ∈ ℋ
323, 30, 31hvadd32i 27757 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
333, 6hvsubvali 27723 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) − (2 · 𝐶)) = ((𝐴 + 𝐵) + (-1 · (2 · 𝐶)))
3433oveq1i 6614 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (-1 · (𝐴 𝐵)))
354, 2hvmulcli 27717 . . . . . . . . . . . . . . . 16 (2 · 𝐵) ∈ ℋ
3635, 6hvsubvali 27723 . . . . . . . . . . . . . . 15 ((2 · 𝐵) − (2 · 𝐶)) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
371, 2hvcomi 27722 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = (𝐵 + 𝐴)
381, 2hvnegdii 27765 . . . . . . . . . . . . . . . . . 18 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
3937, 38oveq12i 6616 . . . . . . . . . . . . . . . . 17 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = ((𝐵 + 𝐴) + (𝐵 𝐴))
402, 1hvsubcan2i 27767 . . . . . . . . . . . . . . . . 17 ((𝐵 + 𝐴) + (𝐵 𝐴)) = (2 · 𝐵)
4139, 40eqtri 2643 . . . . . . . . . . . . . . . 16 ((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) = (2 · 𝐵)
4241oveq1i 6614 . . . . . . . . . . . . . . 15 (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶))) = ((2 · 𝐵) + (-1 · (2 · 𝐶)))
4336, 42eqtr4i 2646 . . . . . . . . . . . . . 14 ((2 · 𝐵) − (2 · 𝐶)) = (((𝐴 + 𝐵) + (-1 · (𝐴 𝐵))) + (-1 · (2 · 𝐶)))
4432, 34, 433eqtr4i 2653 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵))) = ((2 · 𝐵) − (2 · 𝐶))
457, 11hvsubvali 27723 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (((𝐴 + 𝐵) − (2 · 𝐶)) + (-1 · (𝐴 𝐵)))
464, 2, 5hvsubdistr1i 27755 . . . . . . . . . . . . 13 (2 · (𝐵 𝐶)) = ((2 · 𝐵) − (2 · 𝐶))
4744, 45, 463eqtr4i 2653 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)) = (2 · (𝐵 𝐶))
4847fveq2i 6151 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (norm‘(2 · (𝐵 𝐶)))
494, 21norm-iii-i 27842 . . . . . . . . . . 11 (norm‘(2 · (𝐵 𝐶))) = ((abs‘2) · (norm‘(𝐵 𝐶)))
50 0le2 11055 . . . . . . . . . . . . 13 0 ≤ 2
51 2re 11034 . . . . . . . . . . . . . 14 2 ∈ ℝ
5251absidi 14051 . . . . . . . . . . . . 13 (0 ≤ 2 → (abs‘2) = 2)
5350, 52ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
5453oveq1i 6614 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐵 𝐶))) = (2 · (norm‘(𝐵 𝐶)))
5548, 49, 543eqtri 2647 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵))) = (2 · (norm‘(𝐵 𝐶)))
5655oveq1i 6614 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐵 𝐶)))↑2)
5722recni 9996 . . . . . . . . . 10 (norm‘(𝐵 𝐶)) ∈ ℂ
584, 57sqmuli 12887 . . . . . . . . 9 ((2 · (norm‘(𝐵 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐵 𝐶))↑2))
59 sq2 12900 . . . . . . . . . 10 (2↑2) = 4
6059oveq1i 6614 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐵 𝐶))↑2)) = (4 · ((norm‘(𝐵 𝐶))↑2))
6156, 58, 603eqtri 2647 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐵 𝐶))↑2))
621, 2hvsubcan2i 27767 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
6362oveq1i 6614 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶))) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
643, 30, 11hvadd32i 27757 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (𝐴 𝐵)) + (-1 · (2 · 𝐶)))
654, 1hvmulcli 27717 . . . . . . . . . . . . . . 15 (2 · 𝐴) ∈ ℋ
6665, 6hvsubvali 27723 . . . . . . . . . . . . . 14 ((2 · 𝐴) − (2 · 𝐶)) = ((2 · 𝐴) + (-1 · (2 · 𝐶)))
6763, 64, 663eqtr4i 2653 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵)) = ((2 · 𝐴) − (2 · 𝐶))
6833oveq1i 6614 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (((𝐴 + 𝐵) + (-1 · (2 · 𝐶))) + (𝐴 𝐵))
694, 1, 5hvsubdistr1i 27755 . . . . . . . . . . . . 13 (2 · (𝐴 𝐶)) = ((2 · 𝐴) − (2 · 𝐶))
7067, 68, 693eqtr4i 2653 . . . . . . . . . . . 12 (((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)) = (2 · (𝐴 𝐶))
7170fveq2i 6151 . . . . . . . . . . 11 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (norm‘(2 · (𝐴 𝐶)))
724, 16norm-iii-i 27842 . . . . . . . . . . 11 (norm‘(2 · (𝐴 𝐶))) = ((abs‘2) · (norm‘(𝐴 𝐶)))
7353oveq1i 6614 . . . . . . . . . . 11 ((abs‘2) · (norm‘(𝐴 𝐶))) = (2 · (norm‘(𝐴 𝐶)))
7471, 72, 733eqtri 2647 . . . . . . . . . 10 (norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵))) = (2 · (norm‘(𝐴 𝐶)))
7574oveq1i 6614 . . . . . . . . 9 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = ((2 · (norm‘(𝐴 𝐶)))↑2)
7617recni 9996 . . . . . . . . . 10 (norm‘(𝐴 𝐶)) ∈ ℂ
774, 76sqmuli 12887 . . . . . . . . 9 ((2 · (norm‘(𝐴 𝐶)))↑2) = ((2↑2) · ((norm‘(𝐴 𝐶))↑2))
7859oveq1i 6614 . . . . . . . . 9 ((2↑2) · ((norm‘(𝐴 𝐶))↑2)) = (4 · ((norm‘(𝐴 𝐶))↑2))
7975, 77, 783eqtri 2647 . . . . . . . 8 ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2) = (4 · ((norm‘(𝐴 𝐶))↑2))
8061, 79oveq12i 6616 . . . . . . 7 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((4 · ((norm‘(𝐵 𝐶))↑2)) + (4 · ((norm‘(𝐴 𝐶))↑2)))
8128, 80eqtr4i 2646 . . . . . 6 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2))
827, 11normpari 27857 . . . . . 6 (((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) − (𝐴 𝐵)))↑2) + ((norm‘(((𝐴 + 𝐵) − (2 · 𝐶)) + (𝐴 𝐵)))↑2)) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8381, 82eqtri 2643 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) = ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2)))
8483oveq1i 6614 . . . 4 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2)
854, 10mulcli 9989 . . . . 5 (2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) ∈ ℂ
864, 14mulcli 9989 . . . . 5 (2 · ((norm‘(𝐴 𝐵))↑2)) ∈ ℂ
8785, 86, 4, 26divdiri 10726 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) + (2 · ((norm‘(𝐴 𝐵))↑2))) / 2) = (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2))
8810, 4, 26divcan3i 10715 . . . . 5 ((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) = ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)
8914, 4, 26divcan3i 10715 . . . . 5 ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2) = ((norm‘(𝐴 𝐵))↑2)
9088, 89oveq12i 6616 . . . 4 (((2 · ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2)) / 2) + ((2 · ((norm‘(𝐴 𝐵))↑2)) / 2)) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9184, 87, 903eqtri 2647 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) + (4 · ((norm‘(𝐵 𝐶))↑2))) / 2) = (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2))
9215, 19, 4, 26div23i 10727 . . . . 5 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐴 𝐶))↑2))
93 4d2e2 11128 . . . . . 6 (4 / 2) = 2
9493oveq1i 6614 . . . . 5 ((4 / 2) · ((norm‘(𝐴 𝐶))↑2)) = (2 · ((norm‘(𝐴 𝐶))↑2))
9592, 94eqtri 2643 . . . 4 ((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐴 𝐶))↑2))
9615, 24, 4, 26div23i 10727 . . . . 5 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = ((4 / 2) · ((norm‘(𝐵 𝐶))↑2))
9793oveq1i 6614 . . . . 5 ((4 / 2) · ((norm‘(𝐵 𝐶))↑2)) = (2 · ((norm‘(𝐵 𝐶))↑2))
9896, 97eqtri 2643 . . . 4 ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2) = (2 · ((norm‘(𝐵 𝐶))↑2))
9995, 98oveq12i 6616 . . 3 (((4 · ((norm‘(𝐴 𝐶))↑2)) / 2) + ((4 · ((norm‘(𝐵 𝐶))↑2)) / 2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10027, 91, 993eqtr3i 2651 . 2 (((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2) + ((norm‘(𝐴 𝐵))↑2)) = ((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2)))
10110, 14, 100mvlladdi 10243 1 ((norm‘(𝐴 𝐵))↑2) = (((2 · ((norm‘(𝐴 𝐶))↑2)) + (2 · ((norm‘(𝐵 𝐶))↑2))) − ((norm‘((𝐴 + 𝐵) − (2 · 𝐶)))↑2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  4c4 11016  cexp 12800  abscabs 13908  chil 27622   + cva 27623   · csm 27624  normcno 27626   cmv 27628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hfvadd 27703  ax-hvcom 27704  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvmulass 27710  ax-hvdistr1 27711  ax-hvdistr2 27712  ax-hvmul0 27713  ax-hfi 27782  ax-his1 27785  ax-his2 27786  ax-his3 27787  ax-his4 27788
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-hnorm 27671  df-hvsub 27674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator