![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosepeq | Structured version Visualization version GIF version |
Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nosepeq | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosepon 32124 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | |
2 | onelon 5909 | . . . 4 ⊢ ((∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) | |
3 | 1, 2 | sylan 489 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) |
4 | simpr 479 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) | |
5 | fveq2 6352 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
6 | fveq2 6352 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) | |
7 | 5, 6 | neeq12d 2993 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
8 | 7 | onnminsb 7169 | . . 3 ⊢ (𝑋 ∈ On → (𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
9 | 3, 4, 8 | sylc 65 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
10 | df-ne 2933 | . . 3 ⊢ ((𝐴‘𝑋) ≠ (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) = (𝐵‘𝑋)) | |
11 | 10 | con2bii 346 | . 2 ⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
12 | 9, 11 | sylibr 224 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {crab 3054 ∩ cint 4627 Oncon0 5884 ‘cfv 6049 No csur 32099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-1o 7729 df-2o 7730 df-no 32102 |
This theorem is referenced by: nosepssdm 32142 nodenselem7 32146 |
Copyright terms: Public domain | W3C validator |