Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1 Structured version   Visualization version   GIF version

Theorem nosupbnd1 31985
Description: Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑔)

Proof of Theorem nosupbnd1
StepHypRef Expression
1 simpr3 1089 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
2 nfv 1883 . . . . . . . . 9 𝑥(𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)
3 nfcv 2793 . . . . . . . . . 10 𝑥𝐴
4 nfriota1 6658 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5 nfcv 2793 . . . . . . . . . . . 12 𝑥 <s
6 nfcv 2793 . . . . . . . . . . . 12 𝑥𝑦
74, 5, 6nfbr 4732 . . . . . . . . . . 11 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
87nfn 1824 . . . . . . . . . 10 𝑥 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
93, 8nfral 2974 . . . . . . . . 9 𝑥𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
102, 9nfim 1865 . . . . . . . 8 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
11 simpl 472 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
12 rspe 3032 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1312adantr 480 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
14 nomaxmo 31972 . . . . . . . . . . . . . . 15 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
15143ad2ant1 1102 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1615adantl 481 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
17 reu5 3189 . . . . . . . . . . . . 13 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1813, 16, 17sylanbrc 699 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
19 riota1 6669 . . . . . . . . . . . 12 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2018, 19syl 17 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2111, 20mpbid 222 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
22 simplr 807 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
23 nfra1 2970 . . . . . . . . . . . . . 14 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
24 nfcv 2793 . . . . . . . . . . . . . 14 𝑦𝐴
2523, 24nfriota 6660 . . . . . . . . . . . . 13 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26 nfcv 2793 . . . . . . . . . . . . 13 𝑦𝑥
2725, 26nfeq 2805 . . . . . . . . . . . 12 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥
28 breq1 4688 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦𝑥 <s 𝑦))
2928notbid 307 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦))
3027, 29ralbid 3012 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
3130biimprd 238 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3221, 22, 31sylc 65 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
3332exp31 629 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)))
3410, 33rexlimi 3053 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3534imp 444 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
36 nfcv 2793 . . . . . . . . 9 𝑦 <s
37 nfcv 2793 . . . . . . . . 9 𝑦𝑈
3825, 36, 37nfbr 4732 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
3938nfn 1824 . . . . . . 7 𝑦 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
40 breq2 4689 . . . . . . . 8 (𝑦 = 𝑈 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4140notbid 307 . . . . . . 7 (𝑦 = 𝑈 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4239, 41rspc 3334 . . . . . 6 (𝑈𝐴 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
431, 35, 42sylc 65 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)
44 simpr1 1087 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
45 simpl 472 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4615adantl 481 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4745, 46, 17sylanbrc 699 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
48 riotacl 6665 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
4947, 48syl 17 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
5044, 49sseldd 3637 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
51 nofun 31927 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
52 funrel 5943 . . . . . . . . 9 (Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5350, 51, 523syl 18 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
54 sssucid 5840 . . . . . . . 8 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
55 relssres 5472 . . . . . . . 8 ((Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5653, 54, 55sylancl 695 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5756breq1d 4695 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))))
5844, 1sseldd 3637 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈 No )
59 nodmon 31928 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6050, 59syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
61 sucelon 7059 . . . . . . . 8 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6260, 61sylib 208 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
63 sltres 31940 . . . . . . 7 (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No 𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6450, 58, 62, 63syl3anc 1366 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6557, 64sylbird 250 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6643, 65mtod 189 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
67 noextendgt 31948 . . . . 5 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
6850, 67syl 17 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
69 noreson 31938 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
7058, 62, 69syl2anc 694 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
71 2on 7613 . . . . . . . . 9 2𝑜 ∈ On
7271elexi 3244 . . . . . . . 8 2𝑜 ∈ V
7372prid2 4330 . . . . . . 7 2𝑜 ∈ {1𝑜, 2𝑜}
7473noextend 31944 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No )
7550, 74syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No )
76 sltso 31952 . . . . . 6 <s Or No
77 sotr2 5093 . . . . . 6 (( <s Or No ∧ ((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No )) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
7876, 77mpan 706 . . . . 5 (((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No ) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
7970, 50, 75, 78syl3anc 1366 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
8066, 68, 79mp2and 715 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
81 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
82 iftrue 4125 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
8381, 82syl5eq 2697 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
8483dmeqd 5358 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
8572dmsnop 5645 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
8685uneq2i 3797 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
87 dmun 5363 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})
88 df-suc 5767 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
8986, 87, 883eqtr4i 2683 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9084, 89syl6eq 2701 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9190adantr 480 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9291reseq2d 5428 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
9383adantr 480 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
9480, 92, 933brtr4d 4717 . 2 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
95 simpl 472 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
96 simpr1 1087 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
97 simpr2 1088 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 ∈ V)
98 simpr3 1089 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
9981nosupbnd1lem6 31984 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10095, 96, 97, 98, 99syl121anc 1371 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10194, 100pm2.61ian 848 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  ∃!wreu 2943  ∃*wrmo 2944  Vcvv 3231  cun 3605  wss 3607  ifcif 4119  {csn 4210  cop 4216   class class class wbr 4685  cmpt 4762   Or wor 5063  dom cdm 5143  cres 5145  Rel wrel 5148  Oncon0 5761  suc csuc 5763  cio 5887  Fun wfun 5920  cfv 5926  crio 6650  1𝑜c1o 7598  2𝑜c2o 7599   No csur 31918   <s cslt 31919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-1o 7605  df-2o 7606  df-no 31921  df-slt 31922  df-bday 31923
This theorem is referenced by:  nosupbnd2  31987  noetalem2  31989
  Copyright terms: Public domain W3C validator