Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1 Structured version   Visualization version   GIF version

Theorem nosupbnd1 33218
Description: Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑔)

Proof of Theorem nosupbnd1
StepHypRef Expression
1 simpr3 1192 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
2 nfv 1914 . . . . . . . . 9 𝑥(𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)
3 nfcv 2980 . . . . . . . . . 10 𝑥𝐴
4 nfriota1 7124 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5 nfcv 2980 . . . . . . . . . . . 12 𝑥 <s
6 nfcv 2980 . . . . . . . . . . . 12 𝑥𝑦
74, 5, 6nfbr 5116 . . . . . . . . . . 11 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
87nfn 1856 . . . . . . . . . 10 𝑥 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
93, 8nfralw 3228 . . . . . . . . 9 𝑥𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
102, 9nfim 1896 . . . . . . . 8 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
11 simpl 485 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
12 rspe 3307 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1312adantr 483 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
14 nomaxmo 33205 . . . . . . . . . . . . . . 15 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
15143ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1615adantl 484 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
17 reu5 3433 . . . . . . . . . . . . 13 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1813, 16, 17sylanbrc 585 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
19 riota1 7138 . . . . . . . . . . . 12 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2018, 19syl 17 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2111, 20mpbid 234 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
22 simplr 767 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
23 nfra1 3222 . . . . . . . . . . . . . 14 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
24 nfcv 2980 . . . . . . . . . . . . . 14 𝑦𝐴
2523, 24nfriota 7129 . . . . . . . . . . . . 13 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26 nfcv 2980 . . . . . . . . . . . . 13 𝑦𝑥
2725, 26nfeq 2994 . . . . . . . . . . . 12 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥
28 breq1 5072 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦𝑥 <s 𝑦))
2928notbid 320 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦))
3027, 29ralbid 3234 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
3130biimprd 250 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3221, 22, 31sylc 65 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
3332exp31 422 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)))
3410, 33rexlimi 3318 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3534imp 409 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
36 nfcv 2980 . . . . . . . . 9 𝑦 <s
37 nfcv 2980 . . . . . . . . 9 𝑦𝑈
3825, 36, 37nfbr 5116 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
3938nfn 1856 . . . . . . 7 𝑦 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
40 breq2 5073 . . . . . . . 8 (𝑦 = 𝑈 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4140notbid 320 . . . . . . 7 (𝑦 = 𝑈 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4239, 41rspc 3614 . . . . . 6 (𝑈𝐴 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
431, 35, 42sylc 65 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)
44 simpr1 1190 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
45 simpl 485 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4615adantl 484 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4745, 46, 17sylanbrc 585 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
48 riotacl 7134 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
4947, 48syl 17 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
5044, 49sseldd 3971 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
51 nofun 33160 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
52 funrel 6375 . . . . . . . . 9 (Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5350, 51, 523syl 18 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
54 sssucid 6271 . . . . . . . 8 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
55 relssres 5896 . . . . . . . 8 ((Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5653, 54, 55sylancl 588 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5756breq1d 5079 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))))
5844, 1sseldd 3971 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈 No )
59 nodmon 33161 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6050, 59syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
61 sucelon 7535 . . . . . . . 8 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6260, 61sylib 220 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
63 sltres 33173 . . . . . . 7 (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No 𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6450, 58, 62, 63syl3anc 1367 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6557, 64sylbird 262 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6643, 65mtod 200 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
67 noextendgt 33181 . . . . 5 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
6850, 67syl 17 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
69 noreson 33171 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
7058, 62, 69syl2anc 586 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
71 2on 8114 . . . . . . . . 9 2o ∈ On
7271elexi 3516 . . . . . . . 8 2o ∈ V
7372prid2 4702 . . . . . . 7 2o ∈ {1o, 2o}
7473noextend 33177 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
7550, 74syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
76 sltso 33185 . . . . . 6 <s Or No
77 sotr2 5508 . . . . . 6 (( <s Or No ∧ ((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7876, 77mpan 688 . . . . 5 (((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No ) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7970, 50, 75, 78syl3anc 1367 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
8066, 68, 79mp2and 697 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
81 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
82 iftrue 4476 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8381, 82syl5eq 2871 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8483dmeqd 5777 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8572dmsnop 6076 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
8685uneq2i 4139 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
87 dmun 5782 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
88 df-suc 6200 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
8986, 87, 883eqtr4i 2857 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9084, 89syl6eq 2875 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9190adantr 483 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9291reseq2d 5856 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
9383adantr 483 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9480, 92, 933brtr4d 5101 . 2 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
95 simpl 485 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
96 simpr1 1190 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
97 simpr2 1191 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 ∈ V)
98 simpr3 1192 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
9981nosupbnd1lem6 33217 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10095, 96, 97, 98, 99syl121anc 1371 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10194, 100pm2.61ian 810 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  {cab 2802  wral 3141  wrex 3142  ∃!wreu 3143  ∃*wrmo 3144  Vcvv 3497  cun 3937  wss 3939  ifcif 4470  {csn 4570  cop 4576   class class class wbr 5069  cmpt 5149   Or wor 5476  dom cdm 5558  cres 5560  Rel wrel 5563  Oncon0 6194  suc csuc 6196  cio 6315  Fun wfun 6352  cfv 6358  crio 7116  1oc1o 8098  2oc2o 8099   No csur 33151   <s cslt 33152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-1o 8105  df-2o 8106  df-no 33154  df-slt 33155  df-bday 33156
This theorem is referenced by:  nosupbnd2  33220  noetalem2  33222
  Copyright terms: Public domain W3C validator