Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd2 Structured version   Visualization version   GIF version

Theorem nosupbnd2 31987
Description: Bounding law from above for the surreal supremum. Proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd2 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔   𝑣,𝑢,𝑥,𝑦   𝑍,𝑎,𝑔,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem nosupbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . . . . . 6 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)
2 nfcv 2793 . . . . . . . . 9 𝑥𝑍
3 nosupbnd2.1 . . . . . . . . . . 11 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 nfre1 3034 . . . . . . . . . . . 12 𝑥𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦
5 nfriota1 6658 . . . . . . . . . . . . 13 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
65nfdm 5399 . . . . . . . . . . . . . . 15 𝑥dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nfcv 2793 . . . . . . . . . . . . . . 15 𝑥2𝑜
86, 7nfop 4449 . . . . . . . . . . . . . 14 𝑥⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜
98nfsn 4274 . . . . . . . . . . . . 13 𝑥{⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}
105, 9nfun 3802 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})
11 nfcv 2793 . . . . . . . . . . . . 13 𝑥{𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
12 nfiota1 5891 . . . . . . . . . . . . 13 𝑥(℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1311, 12nfmpt 4779 . . . . . . . . . . . 12 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
144, 10, 13nfif 4148 . . . . . . . . . . 11 𝑥if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
153, 14nfcxfr 2791 . . . . . . . . . 10 𝑥𝑆
1615nfdm 5399 . . . . . . . . 9 𝑥dom 𝑆
172, 16nfres 5430 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑆)
18 nfcv 2793 . . . . . . . 8 𝑥 <s
1917, 18, 15nfbr 4732 . . . . . . 7 𝑥(𝑍 ↾ dom 𝑆) <s 𝑆
2019nfn 1824 . . . . . 6 𝑥 ¬ (𝑍 ↾ dom 𝑆) <s 𝑆
211, 20nfim 1865 . . . . 5 𝑥(((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
22 simpl 472 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
23 rspe 3032 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2423adantr 480 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
25 nomaxmo 31972 . . . . . . . . . . . . 13 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26253ad2ant1 1102 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2726ad2antrl 764 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
28 reu5 3189 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
2924, 27, 28sylanbrc 699 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
30 riota1 6669 . . . . . . . . . 10 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3129, 30syl 17 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3222, 31mpbid 222 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
33 nosupbnd2lem1 31986 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
34333expb 1285 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
35 dmeq 5356 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥)
36 suceq 5828 . . . . . . . . . . . . 13 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥)
3735, 36syl 17 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥)
3837reseq2d 5428 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑍 ↾ suc dom 𝑥))
39 id 22 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
4035opeq1d 4439 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩ = ⟨dom 𝑥, 2𝑜⟩)
4140sneqd 4222 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩} = {⟨dom 𝑥, 2𝑜⟩})
4239, 41uneq12d 3801 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
4338, 42breq12d 4698 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ↔ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩})))
4443notbid 307 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ↔ ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩})))
4534, 44syl5ibrcom 237 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
4632, 45mpd 15 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
47 iftrue 4125 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
483, 47syl5eq 2697 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
4923, 48syl 17 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
5049dmeqd 5358 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
51 2on 7613 . . . . . . . . . . . . . . 15 2𝑜 ∈ On
5251elexi 3244 . . . . . . . . . . . . . 14 2𝑜 ∈ V
5352dmsnop 5645 . . . . . . . . . . . . 13 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
5453uneq2i 3797 . . . . . . . . . . . 12 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
55 dmun 5363 . . . . . . . . . . . 12 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})
56 df-suc 5767 . . . . . . . . . . . 12 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
5754, 55, 563eqtr4i 2683 . . . . . . . . . . 11 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5850, 57syl6eq 2701 . . . . . . . . . 10 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5958reseq2d 5428 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
6059adantr 480 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
6149adantr 480 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
6260, 61breq12d 4698 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s 𝑆 ↔ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
6346, 62mtbird 314 . . . . . 6 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
6463exp31 629 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)))
6521, 64rexlimi 3053 . . . 4 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
6665imp 444 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
673nosupno 31974 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
68673adant3 1101 . . . . . . 7 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → 𝑆 No )
6968ad2antrl 764 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 No )
70 nodmon 31928 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
7169, 70syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom 𝑆 ∈ On)
72 noreson 31938 . . . . . 6 ((𝑆 No ∧ dom 𝑆 ∈ On) → (𝑆 ↾ dom 𝑆) ∈ No )
7369, 71, 72syl2anc 694 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) ∈ No )
74 simprl3 1128 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑍 No )
75 noreson 31938 . . . . . 6 ((𝑍 No ∧ dom 𝑆 ∈ On) → (𝑍 ↾ dom 𝑆) ∈ No )
7674, 71, 75syl2anc 694 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) ∈ No )
77 dmres 5454 . . . . . . 7 dom (𝑆 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑆)
78 inss2 3867 . . . . . . 7 (dom 𝑆 ∩ dom 𝑆) ⊆ dom 𝑆
7977, 78eqsstri 3668 . . . . . 6 dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆
8079a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆)
81 dmres 5454 . . . . . . 7 dom (𝑍 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑍)
82 inss1 3866 . . . . . . 7 (dom 𝑆 ∩ dom 𝑍) ⊆ dom 𝑆
8381, 82eqsstri 3668 . . . . . 6 dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆
8483a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆)
853nosupdm 31975 . . . . . . . . . . 11 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑔 ∣ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
8685abeq2d 2763 . . . . . . . . . 10 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
8786adantr 480 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
88 simprl 809 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐴)
89 simplrr 818 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑎𝐴 𝑎 <s 𝑍)
90 breq1 4688 . . . . . . . . . . . . . . 15 (𝑎 = 𝑝 → (𝑎 <s 𝑍𝑝 <s 𝑍))
9190rspcv 3336 . . . . . . . . . . . . . 14 (𝑝𝐴 → (∀𝑎𝐴 𝑎 <s 𝑍𝑝 <s 𝑍))
9288, 89, 91sylc 65 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 <s 𝑍)
93 simprl1 1126 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 No )
9493adantr 480 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐴 No )
9594, 88sseldd 3637 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
9674adantr 480 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
97 sltso 31952 . . . . . . . . . . . . . . 15 <s Or No
98 soasym 31783 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑝 No 𝑍 No )) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
9997, 98mpan 706 . . . . . . . . . . . . . 14 ((𝑝 No 𝑍 No ) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
10095, 96, 99syl2anc 694 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
10192, 100mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑍 <s 𝑝)
102 nodmon 31928 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10395, 102syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
104 simprrl 821 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
105 onelon 5786 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
106103, 104, 105syl2anc 694 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
107 sucelon 7059 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
108106, 107sylib 208 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
109 sltres 31940 . . . . . . . . . . . . 13 ((𝑍 No 𝑝 No ∧ suc 𝑔 ∈ On) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
11096, 95, 108, 109syl3anc 1366 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
111101, 110mtod 189 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔))
112 simpll 805 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
113 simprl2 1127 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 ∈ V)
11493, 113jca 553 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝐴 No 𝐴 ∈ V))
115114adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝐴 No 𝐴 ∈ V))
116 simprrr 822 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
117 breq1 4688 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 <s 𝑝𝑞 <s 𝑝))
118117notbid 307 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝))
119 reseq1 5422 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))
120119eqeq2d 2661 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
121118, 120imbi12d 333 . . . . . . . . . . . . . . 15 (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))
122121cbvralv 3201 . . . . . . . . . . . . . 14 (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
123116, 122sylibr 224 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
1243nosupres 31978 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑝𝐴𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
125112, 115, 88, 104, 123, 124syl113anc 1378 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
126125breq2d 4697 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔)))
127111, 126mtbird 314 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
128127rexlimdvaa 3061 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
12987, 128sylbid 230 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
130129imp 444 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
13169adantr 480 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑆 No )
132 nodmord 31931 . . . . . . . . . . 11 (𝑆 No → Ord dom 𝑆)
133131, 132syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → Ord dom 𝑆)
134 simpr 476 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑔 ∈ dom 𝑆)
135 ordsucss 7060 . . . . . . . . . 10 (Ord dom 𝑆 → (𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆))
136133, 134, 135sylc 65 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → suc 𝑔 ⊆ dom 𝑆)
137136resabs1d 5463 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
138136resabs1d 5463 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑆 ↾ suc 𝑔))
139137, 138breq12d 4698 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → (((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
140130, 139mtbird 314 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
141140ralrimiva 2995 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
142 noresle 31971 . . . . 5 ((((𝑆 ↾ dom 𝑆) ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) ∧ (dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
14373, 76, 80, 84, 141, 142syl23anc 1373 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
144 nofun 31927 . . . . . . 7 (𝑆 No → Fun 𝑆)
14569, 144syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → Fun 𝑆)
146 funrel 5943 . . . . . 6 (Fun 𝑆 → Rel 𝑆)
147 resdm 5476 . . . . . 6 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
148145, 146, 1473syl 18 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) = 𝑆)
149148breq2d 4697 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆) ↔ (𝑍 ↾ dom 𝑆) <s 𝑆))
150143, 149mtbid 313 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
15166, 150pm2.61ian 848 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
152 simpll1 1120 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 No )
153 simpll2 1121 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 ∈ V)
154 simpr 476 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎𝐴)
1553nosupbnd1 31985 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
156152, 153, 154, 155syl3anc 1366 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
157 simplr 807 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
158 simpl1 1084 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → 𝐴 No )
159158sselda 3636 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 No )
160152, 153, 67syl2anc 694 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑆 No )
161160, 70syl 17 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → dom 𝑆 ∈ On)
162 noreson 31938 . . . . . . 7 ((𝑎 No ∧ dom 𝑆 ∈ On) → (𝑎 ↾ dom 𝑆) ∈ No )
163159, 161, 162syl2anc 694 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) ∈ No )
164 simpll3 1122 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑍 No )
165164, 161, 75syl2anc 694 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑍 ↾ dom 𝑆) ∈ No )
166 sotr3 31782 . . . . . . 7 (( <s Or No ∧ ((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No )) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
16797, 166mpan 706 . . . . . 6 (((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
168163, 160, 165, 167syl3anc 1366 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
169156, 157, 168mp2and 715 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
170 sltres 31940 . . . . 5 ((𝑎 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
171159, 164, 161, 170syl3anc 1366 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
172169, 171mpd 15 . . 3 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
173172ralrimiva 2995 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → ∀𝑎𝐴 𝑎 <s 𝑍)
174151, 173impbida 895 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  ∃!wreu 2943  ∃*wrmo 2944  Vcvv 3231  cun 3605  cin 3606  wss 3607  ifcif 4119  {csn 4210  cop 4216   class class class wbr 4685  cmpt 4762   Or wor 5063  dom cdm 5143  cres 5145  Rel wrel 5148  Ord word 5760  Oncon0 5761  suc csuc 5763  cio 5887  Fun wfun 5920  cfv 5926  crio 6650  2𝑜c2o 7599   No csur 31918   <s cslt 31919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-1o 7605  df-2o 7606  df-no 31921  df-slt 31922  df-bday 31923
This theorem is referenced by:  noetalem3  31990
  Copyright terms: Public domain W3C validator