Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupdm Structured version   Visualization version   GIF version

Theorem nosupdm 31975
Description: The domain of the surreal supremum when there is no maximum. The primary point of this theorem is to change bound variable. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupdm.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupdm (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Distinct variable groups:   𝐴,𝑔   𝐴,𝑝,𝑞,𝑢,𝑣,𝑦,𝑧   𝑢,𝑔,𝑣,𝑦   𝑞,𝑝,𝑢,𝑣,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑞,𝑝)

Proof of Theorem nosupdm
StepHypRef Expression
1 nosupdm.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 iffalse 4128 . . . . 5 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
31, 2syl5eq 2697 . . . 4 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
43dmeqd 5358 . . 3 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
5 iotaex 5906 . . . 4 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
6 eqid 2651 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
75, 6dmmpti 6061 . . 3 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
84, 7syl6eq 2701 . 2 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9 dmeq 5356 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
109eleq2d 2716 . . . . . 6 (𝑢 = 𝑝 → (𝑦 ∈ dom 𝑢𝑦 ∈ dom 𝑝))
11 breq1 4688 . . . . . . . . . 10 (𝑣 = 𝑞 → (𝑣 <s 𝑢𝑞 <s 𝑢))
1211notbid 307 . . . . . . . . 9 (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑞 <s 𝑢))
13 reseq1 5422 . . . . . . . . . 10 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))
1413eqeq2d 2661 . . . . . . . . 9 (𝑣 = 𝑞 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
1512, 14imbi12d 333 . . . . . . . 8 (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
1615cbvralv 3201 . . . . . . 7 (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
17 breq2 4689 . . . . . . . . . 10 (𝑢 = 𝑝 → (𝑞 <s 𝑢𝑞 <s 𝑝))
1817notbid 307 . . . . . . . . 9 (𝑢 = 𝑝 → (¬ 𝑞 <s 𝑢 ↔ ¬ 𝑞 <s 𝑝))
19 reseq1 5422 . . . . . . . . . 10 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑦))
2019eqeq1d 2653 . . . . . . . . 9 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
2118, 20imbi12d 333 . . . . . . . 8 (𝑢 = 𝑝 → ((¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2221ralbidv 3015 . . . . . . 7 (𝑢 = 𝑝 → (∀𝑞𝐴𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2316, 22syl5bb 272 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2410, 23anbi12d 747 . . . . 5 (𝑢 = 𝑝 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))))
2524cbvrexv 3202 . . . 4 (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
26 eleq1 2718 . . . . . 6 (𝑦 = 𝑧 → (𝑦 ∈ dom 𝑝𝑧 ∈ dom 𝑝))
27 suceq 5828 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
2827reseq2d 5428 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑝 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑧))
2927reseq2d 5428 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑞 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑧))
3028, 29eqeq12d 2666 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
3130imbi2d 329 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3231ralbidv 3015 . . . . . 6 (𝑦 = 𝑧 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3326, 32anbi12d 747 . . . . 5 (𝑦 = 𝑧 → ((𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3433rexbidv 3081 . . . 4 (𝑦 = 𝑧 → (∃𝑝𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3525, 34syl5bb 272 . . 3 (𝑦 = 𝑧 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3635cbvabv 2776 . 2 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
378, 36syl6eq 2701 1 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  cun 3605  ifcif 4119  {csn 4210  cop 4216   class class class wbr 4685  cmpt 4762  dom cdm 5143  cres 5145  suc csuc 5763  cio 5887  cfv 5926  crio 6650  2𝑜c2o 7599   <s cslt 31919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929
This theorem is referenced by:  nosupbnd1lem3  31981  nosupbnd1lem5  31983  nosupbnd2  31987
  Copyright terms: Public domain W3C validator