Step | Hyp | Ref
| Expression |
1 | | nosupfv.1 |
. . . . 5
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | iffalse 4128 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
3 | 1, 2 | syl5eq 2697 |
. . . 4
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
4 | 3 | fveq1d 6231 |
. . 3
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝑆‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
5 | 4 | 3ad2ant1 1102 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆‘𝐺) = ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺)) |
6 | | dmeq 5356 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
7 | 6 | eleq2d 2716 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (𝐺 ∈ dom 𝑝 ↔ 𝐺 ∈ dom 𝑈)) |
8 | | breq2 4689 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑈 → (𝑣 <s 𝑝 ↔ 𝑣 <s 𝑈)) |
9 | 8 | notbid 307 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑣 <s 𝑈)) |
10 | | reseq1 5422 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
11 | 10 | eqeq1d 2653 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
12 | 9, 11 | imbi12d 333 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
13 | 12 | ralbidv 3015 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
14 | 7, 13 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → ((𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
15 | 14 | rspcev 3340 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
16 | 15 | 3impb 1279 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
17 | | dmeq 5356 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
18 | 17 | eleq2d 2716 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) |
19 | | breq2 4689 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) |
20 | 19 | notbid 307 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) |
21 | | reseq1 5422 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
22 | 21 | eqeq1d 2653 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
23 | 20, 22 | imbi12d 333 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
24 | 23 | ralbidv 3015 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
25 | 18, 24 | anbi12d 747 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
26 | 25 | cbvrexv 3202 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
27 | 16, 26 | sylibr 224 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
28 | 27 | 3ad2ant3 1104 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
29 | | simp32 1118 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈) |
30 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
31 | | suceq 5828 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺) |
32 | 31 | reseq2d 5428 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺)) |
33 | 31 | reseq2d 5428 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺)) |
34 | 32, 33 | eqeq12d 2666 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
35 | 34 | imbi2d 329 |
. . . . . . . . 9
⊢ (𝑦 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
36 | 35 | ralbidv 3015 |
. . . . . . . 8
⊢ (𝑦 = 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
37 | 30, 36 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
38 | 37 | rexbidv 3081 |
. . . . . 6
⊢ (𝑦 = 𝐺 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
39 | 38 | elabg 3383 |
. . . . 5
⊢ (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
40 | 29, 39 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))) |
41 | 28, 40 | mpbird 247 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
42 | | eleq1 2718 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢)) |
43 | | suceq 5828 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → suc 𝑔 = suc 𝐺) |
44 | 43 | reseq2d 5428 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝐺)) |
45 | 43 | reseq2d 5428 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝐺)) |
46 | 44, 45 | eqeq12d 2666 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
47 | 46 | imbi2d 329 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
48 | 47 | ralbidv 3015 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
49 | | fveq2 6229 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑢‘𝑔) = (𝑢‘𝐺)) |
50 | 49 | eqeq1d 2653 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝐺) = 𝑥)) |
51 | 42, 48, 50 | 3anbi123d 1439 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
52 | 51 | rexbidv 3081 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
53 | 52 | iotabidv 5910 |
. . . 4
⊢ (𝑔 = 𝐺 → (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
54 | | eqid 2651 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
55 | | iotaex 5906 |
. . . 4
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) ∈ V |
56 | 53, 54, 55 | fvmpt 6321 |
. . 3
⊢ (𝐺 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
57 | 41, 56 | syl 17 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))‘𝐺) = (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
58 | | simp1 1081 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝑈 ∈ 𝐴) |
59 | | simp2 1082 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ dom 𝑈) |
60 | | simp3 1083 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
61 | | eqidd 2652 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝑈‘𝐺) = (𝑈‘𝐺)) |
62 | | dmeq 5356 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈) |
63 | 62 | eleq2d 2716 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈)) |
64 | | breq2 4689 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑈)) |
65 | 64 | notbid 307 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑈)) |
66 | | reseq1 5422 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (𝑢 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) |
67 | 66 | eqeq1d 2653 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
68 | 65, 67 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
69 | 68 | ralbidv 3015 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
70 | | fveq1 6228 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢‘𝐺) = (𝑈‘𝐺)) |
71 | 70 | eqeq1d 2653 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢‘𝐺) = (𝑈‘𝐺) ↔ (𝑈‘𝐺) = (𝑈‘𝐺))) |
72 | 63, 69, 71 | 3anbi123d 1439 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺)))) |
73 | 72 | rspcev 3340 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑈‘𝐺) = (𝑈‘𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
74 | 58, 59, 60, 61, 73 | syl13anc 1368 |
. . . 4
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
75 | 74 | 3ad2ant3 1104 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺))) |
76 | | fvex 6239 |
. . . 4
⊢ (𝑈‘𝐺) ∈ V |
77 | | eqid 2651 |
. . . . . . . . . 10
⊢ (𝑢‘𝐺) = (𝑢‘𝐺) |
78 | | fvex 6239 |
. . . . . . . . . . 11
⊢ (𝑢‘𝐺) ∈ V |
79 | | eqeq2 2662 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑢‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑢‘𝐺))) |
80 | 79 | 3anbi3d 1445 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)))) |
81 | 78, 80 | spcev 3331 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑢‘𝐺)) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
82 | 77, 81 | mp3an3 1453 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
83 | 82 | reximi 3040 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢 ∈ 𝐴 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
84 | | rexcom4 3256 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
85 | 83, 84 | sylib 208 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
86 | 27, 85 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
87 | 86 | 3ad2ant3 1104 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
88 | | noprefixmo 31973 |
. . . . . . 7
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
89 | 88 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
90 | 89 | 3ad2ant2 1103 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
91 | | eu5 2524 |
. . . . 5
⊢
(∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (∃𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥))) |
92 | 87, 90, 91 | sylanbrc 699 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |
93 | | eqeq2 2662 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝐺) → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = (𝑈‘𝐺))) |
94 | 93 | 3anbi3d 1445 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝐺) → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
95 | 94 | rexbidv 3081 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝐺) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)))) |
96 | 95 | iota2 5915 |
. . . 4
⊢ (((𝑈‘𝐺) ∈ V ∧ ∃!𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
97 | 76, 92, 96 | sylancr 696 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = (𝑈‘𝐺)) ↔ (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺))) |
98 | 75, 97 | mpbid 222 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (℩𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) = (𝑈‘𝐺)) |
99 | 5, 57, 98 | 3eqtrd 2689 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆‘𝐺) = (𝑈‘𝐺)) |