Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupres Structured version   Visualization version   GIF version

Theorem nosupres 33104
Description: A restriction law for surreal supremum when there is no maximum. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupres.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupres ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝐺   𝑣,𝑔   𝑣,𝐺   𝑥,𝑔,𝑦   𝑦,𝐺   𝑢,𝑈,𝑣,𝑥   𝑦,𝑢   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑔)

Proof of Theorem nosupres
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5868 . . . 4 dom (𝑆 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑆)
2 nosupres.1 . . . . . . . . 9 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32nosupno 33100 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
433ad2ant2 1126 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑆 No )
5 nodmord 33057 . . . . . . 7 (𝑆 No → Ord dom 𝑆)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑆)
7 dmeq 5765 . . . . . . . . . . . . . 14 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
87eleq2d 2895 . . . . . . . . . . . . 13 (𝑝 = 𝑈 → (𝐺 ∈ dom 𝑝𝐺 ∈ dom 𝑈))
9 breq2 5061 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑈 → (𝑣 <s 𝑝𝑣 <s 𝑈))
109notbid 319 . . . . . . . . . . . . . . 15 (𝑝 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑣 <s 𝑈))
11 reseq1 5840 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑈 → (𝑝 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1211eqeq1d 2820 . . . . . . . . . . . . . . 15 (𝑝 = 𝑈 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
1310, 12imbi12d 346 . . . . . . . . . . . . . 14 (𝑝 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
1413ralbidv 3194 . . . . . . . . . . . . 13 (𝑝 = 𝑈 → (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
158, 14anbi12d 630 . . . . . . . . . . . 12 (𝑝 = 𝑈 → ((𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
1615rspcev 3620 . . . . . . . . . . 11 ((𝑈𝐴 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
17163impb 1107 . . . . . . . . . 10 ((𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
18 dmeq 5765 . . . . . . . . . . . . 13 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
1918eleq2d 2895 . . . . . . . . . . . 12 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
20 breq2 5061 . . . . . . . . . . . . . . 15 (𝑢 = 𝑝 → (𝑣 <s 𝑢𝑣 <s 𝑝))
2120notbid 319 . . . . . . . . . . . . . 14 (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝))
22 reseq1 5840 . . . . . . . . . . . . . . 15 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
2322eqeq1d 2820 . . . . . . . . . . . . . 14 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2421, 23imbi12d 346 . . . . . . . . . . . . 13 (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2524ralbidv 3194 . . . . . . . . . . . 12 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2619, 25anbi12d 630 . . . . . . . . . . 11 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2726cbvrexvw 3448 . . . . . . . . . 10 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2817, 27sylibr 235 . . . . . . . . 9 ((𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
29 eleq1 2897 . . . . . . . . . . . . 13 (𝑦 = 𝐺 → (𝑦 ∈ dom 𝑢𝐺 ∈ dom 𝑢))
30 suceq 6249 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐺 → suc 𝑦 = suc 𝐺)
3130reseq2d 5846 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐺 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝐺))
3230reseq2d 5846 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐺 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝐺))
3331, 32eqeq12d 2834 . . . . . . . . . . . . . . 15 (𝑦 = 𝐺 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
3433imbi2d 342 . . . . . . . . . . . . . 14 (𝑦 = 𝐺 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
3534ralbidv 3194 . . . . . . . . . . . . 13 (𝑦 = 𝐺 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
3629, 35anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 𝐺 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
3736rexbidv 3294 . . . . . . . . . . 11 (𝑦 = 𝐺 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
3837elabg 3663 . . . . . . . . . 10 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
39383ad2ant2 1126 . . . . . . . . 9 ((𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → (𝐺 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
4028, 39mpbird 258 . . . . . . . 8 ((𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
41403ad2ant3 1127 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
42 iffalse 4472 . . . . . . . . . . 11 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
432, 42syl5eq 2865 . . . . . . . . . 10 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4443dmeqd 5767 . . . . . . . . 9 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
45 iotaex 6328 . . . . . . . . . 10 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
46 eqid 2818 . . . . . . . . . 10 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
4745, 46dmmpti 6485 . . . . . . . . 9 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
4844, 47syl6eq 2869 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
49483ad2ant1 1125 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
5041, 49eleqtrrd 2913 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑆)
51 ordsucss 7522 . . . . . 6 (Ord dom 𝑆 → (𝐺 ∈ dom 𝑆 → suc 𝐺 ⊆ dom 𝑆))
526, 50, 51sylc 65 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑆)
53 df-ss 3949 . . . . 5 (suc 𝐺 ⊆ dom 𝑆 ↔ (suc 𝐺 ∩ dom 𝑆) = suc 𝐺)
5452, 53sylib 219 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑆) = suc 𝐺)
551, 54syl5eq 2865 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑆 ↾ suc 𝐺) = suc 𝐺)
56 dmres 5868 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
57 simp2l 1191 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐴 No )
58 simp31 1201 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐴)
5957, 58sseldd 3965 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
60 nodmord 33057 . . . . . . 7 (𝑈 No → Ord dom 𝑈)
6159, 60syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
62 simp32 1202 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
63 ordsucss 7522 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
6461, 62, 63sylc 65 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
65 df-ss 3949 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
6664, 65sylib 219 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
6756, 66syl5eq 2865 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6855, 67eqtr4d 2856 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6955eleq2d 2895 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑆 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
70 simpl1 1183 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
71 simpl2 1184 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐴 No 𝐴 ∈ V))
72 simpl31 1246 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐴)
7364sselda 3964 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
74 nodmon 33054 . . . . . . . . . . . . . 14 (𝑈 No → dom 𝑈 ∈ On)
7559, 74syl 17 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
76 onelon 6209 . . . . . . . . . . . . 13 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7775, 62, 76syl2anc 584 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ On)
78 eloni 6194 . . . . . . . . . . . 12 (𝐺 ∈ On → Ord 𝐺)
7977, 78syl 17 . . . . . . . . . . 11 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord 𝐺)
80 ordsuc 7518 . . . . . . . . . . 11 (Ord 𝐺 ↔ Ord suc 𝐺)
8179, 80sylib 219 . . . . . . . . . 10 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord suc 𝐺)
82 ordsucss 7522 . . . . . . . . . 10 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
8381, 82syl 17 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
8483imp 407 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
85 simpl33 1248 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
86 reseq1 5840 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
87 resabs1 5876 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
88 resabs1 5876 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8987, 88eqeq12d 2834 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
9086, 89syl5ib 245 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
9190imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
9291ralimdv 3175 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
9384, 85, 92sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
942nosupfv 33103 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑆𝑎) = (𝑈𝑎))
9570, 71, 72, 73, 93, 94syl113anc 1374 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑆𝑎) = (𝑈𝑎))
96 simpr 485 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
9796fvresd 6683 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = (𝑆𝑎))
9896fvresd 6683 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9995, 97, 983eqtr4d 2863 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
10099ex 413 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
10169, 100sylbid 241 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑆 ↾ suc 𝐺) → ((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
102101ralrimiv 3178 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
103 nofun 33053 . . . 4 (𝑆 No → Fun 𝑆)
104 funres 6390 . . . 4 (Fun 𝑆 → Fun (𝑆 ↾ suc 𝐺))
1054, 103, 1043syl 18 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑆 ↾ suc 𝐺))
106 nofun 33053 . . . 4 (𝑈 No → Fun 𝑈)
107 funres 6390 . . . 4 (Fun 𝑈 → Fun (𝑈 ↾ suc 𝐺))
10859, 106, 1073syl 18 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
109 eqfunfv 6799 . . 3 ((Fun (𝑆 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
110105, 108, 109syl2anc 584 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑆 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑆 ↾ suc 𝐺)((𝑆 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
11168, 102, 110mpbir2and 709 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐴𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wral 3135  wrex 3136  Vcvv 3492  cun 3931  cin 3932  wss 3933  ifcif 4463  {csn 4557  cop 4563   class class class wbr 5057  cmpt 5137  dom cdm 5548  cres 5550  Ord word 6183  Oncon0 6184  suc csuc 6186  cio 6305  Fun wfun 6342  cfv 6348  crio 7102  2oc2o 8085   No csur 33044   <s cslt 33045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-1o 8091  df-2o 8092  df-no 33047  df-slt 33048  df-bday 33049
This theorem is referenced by:  nosupbnd1lem1  33105  nosupbnd2  33113
  Copyright terms: Public domain W3C validator