MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Visualization version   GIF version

Theorem nottru 1515
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru (¬ ⊤ ↔ ⊥)

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1486 . 2 (⊥ ↔ ¬ ⊤)
21bicomi 214 1 (¬ ⊤ ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wtru 1481  wfal 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-fal 1486
This theorem is referenced by:  trunantru  1521  truxortru  1525  falxorfal  1528
  Copyright terms: Public domain W3C validator