MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerid Structured version   Visualization version   GIF version

Theorem nqerid 9699
Description: Corollary of nqereu 9695: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerid (𝐴Q → ([Q]‘𝐴) = 𝐴)

Proof of Theorem nqerid
StepHypRef Expression
1 nqerf 9696 . . 3 [Q]:(N × N)⟶Q
2 ffun 6005 . . 3 ([Q]:(N × N)⟶Q → Fun [Q])
31, 2ax-mp 5 . 2 Fun [Q]
4 elpqn 9691 . . 3 (𝐴Q𝐴 ∈ (N × N))
5 id 22 . . 3 (𝐴Q𝐴Q)
6 enqer 9687 . . . . 5 ~Q Er (N × N)
76a1i 11 . . . 4 (𝐴Q → ~Q Er (N × N))
87, 4erref 7707 . . 3 (𝐴Q𝐴 ~Q 𝐴)
9 df-erq 9679 . . . . 5 [Q] = ( ~Q ∩ ((N × N) × Q))
109breqi 4619 . . . 4 (𝐴[Q]𝐴𝐴( ~Q ∩ ((N × N) × Q))𝐴)
11 brinxp2 5141 . . . 4 (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ (𝐴 ∈ (N × N) ∧ 𝐴Q𝐴 ~Q 𝐴))
1210, 11bitri 264 . . 3 (𝐴[Q]𝐴 ↔ (𝐴 ∈ (N × N) ∧ 𝐴Q𝐴 ~Q 𝐴))
134, 5, 8, 12syl3anbrc 1244 . 2 (𝐴Q𝐴[Q]𝐴)
14 funbrfv 6191 . 2 (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴))
153, 13, 14mpsyl 68 1 (𝐴Q → ([Q]‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  cin 3554   class class class wbr 4613   × cxp 5072  Fun wfun 5841  wf 5843  cfv 5847   Er wer 7684  Ncnpi 9610   ~Q ceq 9617  Qcnq 9618  [Q]cerq 9620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-mi 9640  df-lti 9641  df-enq 9677  df-nq 9678  df-erq 9679  df-1nq 9682
This theorem is referenced by:  addassnq  9724  mulassnq  9725  distrnq  9727  mulidnq  9729  recmulnq  9730  1lt2nq  9739  ltexnq  9741  prlem934  9799
  Copyright terms: Public domain W3C validator