MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqpr Structured version   Visualization version   GIF version

Theorem nqpr 9780
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqpr (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsmallnq 9743 . . . . 5 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
2 abn0 3928 . . . . 5 ({𝑥𝑥 <Q 𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 <Q 𝐴)
31, 2sylibr 224 . . . 4 (𝐴Q → {𝑥𝑥 <Q 𝐴} ≠ ∅)
4 0pss 3985 . . . 4 (∅ ⊊ {𝑥𝑥 <Q 𝐴} ↔ {𝑥𝑥 <Q 𝐴} ≠ ∅)
53, 4sylibr 224 . . 3 (𝐴Q → ∅ ⊊ {𝑥𝑥 <Q 𝐴})
6 ltrelnq 9692 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 5128 . . . . . 6 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
87simpld 475 . . . . 5 (𝑥 <Q 𝐴𝑥Q)
98abssi 3656 . . . 4 {𝑥𝑥 <Q 𝐴} ⊆ Q
10 ltsonq 9735 . . . . . . 7 <Q Or Q
1110, 6soirri 5481 . . . . . 6 ¬ 𝐴 <Q 𝐴
12 breq1 4616 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 <Q 𝐴𝐴 <Q 𝐴))
1312elabg 3334 . . . . . 6 (𝐴Q → (𝐴 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝐴 <Q 𝐴))
1411, 13mtbiri 317 . . . . 5 (𝐴Q → ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴})
1514ancli 573 . . . 4 (𝐴Q → (𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}))
16 ssnelpss 3696 . . . 4 ({𝑥𝑥 <Q 𝐴} ⊆ Q → ((𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}) → {𝑥𝑥 <Q 𝐴} ⊊ Q))
179, 15, 16mpsyl 68 . . 3 (𝐴Q → {𝑥𝑥 <Q 𝐴} ⊊ Q)
185, 17jca 554 . 2 (𝐴Q → (∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q))
19 vex 3189 . . . . 5 𝑦 ∈ V
20 breq1 4616 . . . . 5 (𝑥 = 𝑦 → (𝑥 <Q 𝐴𝑦 <Q 𝐴))
2119, 20elab 3333 . . . 4 (𝑦 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑦 <Q 𝐴)
2210, 6sotri 5482 . . . . . . . . 9 ((𝑧 <Q 𝑦𝑦 <Q 𝐴) → 𝑧 <Q 𝐴)
2322expcom 451 . . . . . . . 8 (𝑦 <Q 𝐴 → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
2423adantl 482 . . . . . . 7 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
25 vex 3189 . . . . . . . 8 𝑧 ∈ V
26 breq1 4616 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 <Q 𝐴𝑧 <Q 𝐴))
2725, 26elab 3333 . . . . . . 7 (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑧 <Q 𝐴)
2824, 27syl6ibr 242 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
2928alrimiv 1852 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
30 ltbtwnnq 9744 . . . . . . . 8 (𝑦 <Q 𝐴 ↔ ∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴))
3127anbi2i 729 . . . . . . . . . . 11 ((𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ↔ (𝑦 <Q 𝑧𝑧 <Q 𝐴))
3231biimpri 218 . . . . . . . . . 10 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
3332ancomd 467 . . . . . . . . 9 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3433eximi 1759 . . . . . . . 8 (∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3530, 34sylbi 207 . . . . . . 7 (𝑦 <Q 𝐴 → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3635adantl 482 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
37 df-rex 2913 . . . . . 6 (∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3836, 37sylibr 224 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)
3929, 38jca 554 . . . 4 ((𝐴Q𝑦 <Q 𝐴) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4021, 39sylan2b 492 . . 3 ((𝐴Q𝑦 ∈ {𝑥𝑥 <Q 𝐴}) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4140ralrimiva 2960 . 2 (𝐴Q → ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
42 elnp 9753 . 2 ({𝑥𝑥 <Q 𝐴} ∈ P ↔ ((∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q) ∧ ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)))
4318, 41, 42sylanbrc 697 1 (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  wss 3555  wpss 3556  c0 3891   class class class wbr 4613  Qcnq 9618   <Q cltq 9624  Pcnp 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747
This theorem is referenced by:  1pr  9781
  Copyright terms: Public domain W3C validator