MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   GIF version

Theorem nrginvrcn 22406
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.j 𝐽 = (TopOpen‘𝑅)
Assertion
Ref Expression
nrginvrcn (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem nrginvrcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 22377 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
2 nrginvrcn.u . . . . 5 𝑈 = (Unit‘𝑅)
3 eqid 2621 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
42, 3unitgrp 18588 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
52, 3unitgrpbas 18587 . . . . 5 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
6 nrginvrcn.i . . . . . 6 𝐼 = (invr𝑅)
72, 3, 6invrfval 18594 . . . . 5 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
85, 7grpinvf 17387 . . . 4 (((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp → 𝐼:𝑈𝑈)
91, 4, 83syl 18 . . 3 (𝑅 ∈ NrmRing → 𝐼:𝑈𝑈)
10 1rp 11780 . . . . . . . 8 1 ∈ ℝ+
1110ne0ii 3899 . . . . . . 7 + ≠ ∅
121ad2antrr 761 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
13 nrginvrcn.x . . . . . . . . . . . . . . . 16 𝑋 = (Base‘𝑅)
1413, 2unitss 18581 . . . . . . . . . . . . . . 15 𝑈𝑋
15 simplrl 799 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑈)
1614, 15sseldi 3581 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑋)
17 simpr 477 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑈)
1814, 17sseldi 3581 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑋)
19 eqid 2621 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
20 eqid 2621 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
2113, 19, 20ring1eq0 18511 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑥𝑋𝑦𝑋) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
2212, 16, 18, 21syl3anc 1323 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
23 eqid 2621 . . . . . . . . . . . . . . . 16 (𝐼𝑦) = (𝐼𝑦)
24 nrgngp 22376 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
25 ngpms 22314 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp)
26 msxms 22169 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp)
2827ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ ∞MetSp)
299adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → 𝐼:𝑈𝑈)
3029ffvelrnda 6315 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑈)
3114, 30sseldi 3581 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
32 eqid 2621 . . . . . . . . . . . . . . . . . 18 (dist‘𝑅) = (dist‘𝑅)
3313, 32xmseq0 22179 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ∞MetSp ∧ (𝐼𝑦) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3428, 31, 31, 33syl3anc 1323 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3523, 34mpbiri 248 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0)
36 simplrr 800 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑟 ∈ ℝ+)
3736rpgt0d 11819 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 0 < 𝑟)
3835, 37eqbrtrd 4635 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
39 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
4039oveq1d 6619 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) = ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)))
4140breq1d 4623 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4238, 41syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4322, 42syld 47 . . . . . . . . . . . 12 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4443imp 445 . . . . . . . . . . 11 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) ∧ (1r𝑅) = (0g𝑅)) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4544an32s 845 . . . . . . . . . 10 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4645a1d 25 . . . . . . . . 9 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4746ralrimiva 2960 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4847ralrimivw 2961 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
49 r19.2z 4032 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
5011, 48, 49sylancr 694 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
51 eqid 2621 . . . . . . 7 (norm‘𝑅) = (norm‘𝑅)
52 simpll 789 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NrmRing)
531ad2antrr 761 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
54 simpr 477 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
5519, 20isnzr 19178 . . . . . . . 8 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5653, 54, 55sylanbrc 697 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NzRing)
57 simplrl 799 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑥𝑈)
58 simplrr 800 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑟 ∈ ℝ+)
59 eqid 2621 . . . . . . 7 (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2))
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 22405 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6150, 60pm2.61dane 2877 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6215, 17ovresd 6754 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦))
6362breq1d 4623 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠))
64 simpl 473 . . . . . . . . . . . 12 ((𝑥𝑈𝑟 ∈ ℝ+) → 𝑥𝑈)
65 ffvelrn 6313 . . . . . . . . . . . 12 ((𝐼:𝑈𝑈𝑥𝑈) → (𝐼𝑥) ∈ 𝑈)
669, 64, 65syl2an 494 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (𝐼𝑥) ∈ 𝑈)
6766adantr 481 . . . . . . . . . 10 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑥) ∈ 𝑈)
6867, 30ovresd 6754 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) = ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)))
6968breq1d 4623 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
7063, 69imbi12d 334 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7170ralbidva 2979 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∀𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7271rexbidv 3045 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7361, 72mpbird 247 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
7473ralrimivva 2965 . . 3 (𝑅 ∈ NrmRing → ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
75 xpss12 5186 . . . . . . 7 ((𝑈𝑋𝑈𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋))
7614, 14, 75mp2an 707 . . . . . 6 (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)
77 resabs1 5386 . . . . . 6 ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)))
7876, 77ax-mp 5 . . . . 5 (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))
79 eqid 2621 . . . . . . . 8 ((dist‘𝑅) ↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
8013, 79xmsxmet 22171 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
8124, 25, 26, 804syl 19 . . . . . 6 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
82 xmetres2 22076 . . . . . 6 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8381, 14, 82sylancl 693 . . . . 5 (𝑅 ∈ NrmRing → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8478, 83syl5eqelr 2703 . . . 4 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
85 eqid 2621 . . . . 5 (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))
8685, 85metcn 22258 . . . 4 ((((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈) ∧ ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
8784, 84, 86syl2anc 692 . . 3 (𝑅 ∈ NrmRing → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
889, 74, 87mpbir2and 956 . 2 (𝑅 ∈ NrmRing → 𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
89 nrginvrcn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
9089, 13, 79mstopn 22167 . . . . . 6 (𝑅 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9124, 25, 903syl 18 . . . . 5 (𝑅 ∈ NrmRing → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9291oveq1d 6619 . . . 4 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈))
9378eqcomi 2630 . . . . . 6 ((dist‘𝑅) ↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈))
94 eqid 2621 . . . . . 6 (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))
9593, 94, 85metrest 22239 . . . . 5 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9681, 14, 95sylancl 693 . . . 4 (𝑅 ∈ NrmRing → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9792, 96eqtrd 2655 . . 3 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9897, 97oveq12d 6622 . 2 (𝑅 ∈ NrmRing → ((𝐽t 𝑈) Cn (𝐽t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
9988, 98eleqtrrd 2701 1 (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555  c0 3891  ifcif 4058   class class class wbr 4613   × cxp 5072  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  +crp 11776  Basecbs 15781  s cress 15782  distcds 15871  t crest 16002  TopOpenctopn 16003  0gc0g 16021  Grpcgrp 17343  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  Unitcui 18560  invrcinvr 18592  NzRingcnzr 19176  ∞Metcxmt 19650  MetOpencmopn 19655   Cn ccn 20938  ∞MetSpcxme 22032  MetSpcmt 22033  normcnm 22291  NrmGrpcngp 22292  NrmRingcnrg 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-tset 15881  df-ple 15882  df-ds 15885  df-rest 16004  df-0g 16023  df-topgen 16025  df-xrs 16083  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-abv 18738  df-nzr 19177  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nrg 22300
This theorem is referenced by:  nrgtdrg  22407
  Copyright terms: Public domain W3C validator