MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Visualization version   GIF version

Theorem nrmhmph 22330
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))

Proof of Theorem nrmhmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 22312 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4307 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 22296 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 482 . . . . . . 7 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 21777 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 763 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm)
84adantr 481 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 767 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥𝐾)
10 cnima 21801 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑥) ∈ 𝐽)
12 simprr 769 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))
1312elin1d 4172 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾))
14 cnclima 21804 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝑓𝑦) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ∈ (Clsd‘𝐽))
1612elin2d 4173 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥)
1716elpwid 4549 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦𝑥)
18 imass2 5958 . . . . . . . . . 10 (𝑦𝑥 → (𝑓𝑦) ⊆ (𝑓𝑥))
1917, 18syl 17 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ⊆ (𝑓𝑥))
20 nrmsep3 21891 . . . . . . . . 9 ((𝐽 ∈ Nrm ∧ ((𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (Clsd‘𝐽) ∧ (𝑓𝑦) ⊆ (𝑓𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
217, 11, 15, 19, 20syl13anc 1364 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
22 simpllr 772 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
23 simprl 767 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
24 hmeoima 22301 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2522, 23, 24syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
26 simprrl 777 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ⊆ 𝑤)
27 eqid 2818 . . . . . . . . . . . . . 14 𝐽 = 𝐽
28 eqid 2818 . . . . . . . . . . . . . 14 𝐾 = 𝐾
2927, 28hmeof1o 22300 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
3022, 29syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
31 f1ofun 6610 . . . . . . . . . . . 12 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
3230, 31syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
3313adantr 481 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (Clsd‘𝐾))
3428cldss 21565 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐾) → 𝑦 𝐾)
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
36 f1ofo 6615 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
37 forn 6586 . . . . . . . . . . . . 13 (𝑓: 𝐽onto 𝐾 → ran 𝑓 = 𝐾)
3830, 36, 373syl 18 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ran 𝑓 = 𝐾)
3935, 38sseqtrrd 4005 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ ran 𝑓)
40 funimass1 6429 . . . . . . . . . . 11 ((Fun 𝑓𝑦 ⊆ ran 𝑓) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4132, 39, 40syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4226, 41mpd 15 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ (𝑓𝑤))
43 elssuni 4859 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4443ad2antrl 724 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4527hmeocls 22304 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4622, 44, 45syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
47 simprrr 778 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
48 nrmtop 21872 . . . . . . . . . . . . . . 15 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
4948ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5027clsss3 21595 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 44, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6612 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5330, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 4005 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 6816 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5632, 54, 55syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5747, 56mpbird 258 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5846, 57eqsstrd 4002 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 sseq2 3990 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ⊆ (𝑓𝑤)))
60 fveq2 6663 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 3995 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 630 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3620 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6425, 42, 58, 63syl12anc 832 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6521, 64rexlimddv 3288 . . . . . . 7 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3188 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isnrm 21871 . . . . . 6 (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 583 . . . . 5 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm)
6968expcom 414 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
7069exlimiv 1922 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
712, 70sylbi 218 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
721, 71sylbi 218 1 (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535   cuni 4830   class class class wbr 5057  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  Fun wfun 6342  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  Topctop 21429  Clsdccld 21552  clsccl 21554   Cn ccn 21760  Nrmcnrm 21846  Homeochmeo 22289  chmph 22290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-1o 8091  df-map 8397  df-top 21430  df-topon 21447  df-cld 21555  df-cls 21557  df-cn 21763  df-nrm 21853  df-hmeo 22291  df-hmph 22292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator