MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Visualization version   GIF version

Theorem nrmsep3 21966
Description: In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽

Proof of Theorem nrmsep3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 21946 . . . . 5 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)))
2 pweq 4558 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
32ineq2d 4192 . . . . . . 7 (𝑦 = 𝐴 → ((Clsd‘𝐽) ∩ 𝒫 𝑦) = ((Clsd‘𝐽) ∩ 𝒫 𝐴))
4 sseq2 3996 . . . . . . . . 9 (𝑦 = 𝐴 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
54anbi2d 630 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
65rexbidv 3300 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
73, 6raleqbidv 3404 . . . . . 6 (𝑦 = 𝐴 → (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
87rspccv 3623 . . . . 5 (∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
91, 8simplbiim 507 . . . 4 (𝐽 ∈ Nrm → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
10 elin 4172 . . . . . 6 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴))
11 elpwg 4545 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1211pm5.32i 577 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
1310, 12bitri 277 . . . . 5 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
14 cleq1lem 14345 . . . . . . 7 (𝑧 = 𝐵 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1514rexbidv 3300 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1615rspccv 3623 . . . . 5 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1713, 16syl5bir 245 . . . 4 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
189, 17syl6 35 . . 3 (𝐽 ∈ Nrm → (𝐴𝐽 → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))))
1918exp4a 434 . 2 (𝐽 ∈ Nrm → (𝐴𝐽 → (𝐵 ∈ (Clsd‘𝐽) → (𝐵𝐴 → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))))
20193imp2 1345 1 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cin 3938  wss 3939  𝒫 cpw 4542  cfv 6358  Topctop 21504  Clsdccld 21627  clsccl 21629  Nrmcnrm 21921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-nrm 21928
This theorem is referenced by:  nrmsep2  21967  kqnrmlem1  22354  kqnrmlem2  22355  nrmr0reg  22360  nrmhmph  22405
  Copyright terms: Public domain W3C validator