MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Visualization version   GIF version

Theorem nrmsep3 21207
Description: In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽

Proof of Theorem nrmsep3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 21187 . . . . 5 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)))
2 pweq 4194 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
32ineq2d 3847 . . . . . . 7 (𝑦 = 𝐴 → ((Clsd‘𝐽) ∩ 𝒫 𝑦) = ((Clsd‘𝐽) ∩ 𝒫 𝐴))
4 sseq2 3660 . . . . . . . . 9 (𝑦 = 𝐴 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
54anbi2d 740 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
65rexbidv 3081 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
73, 6raleqbidv 3182 . . . . . 6 (𝑦 = 𝐴 → (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
87rspccv 3337 . . . . 5 (∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
91, 8simplbiim 659 . . . 4 (𝐽 ∈ Nrm → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
10 elin 3829 . . . . . 6 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴))
11 elpwg 4199 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1211pm5.32i 670 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
1310, 12bitri 264 . . . . 5 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
14 cleq1lem 13767 . . . . . . 7 (𝑧 = 𝐵 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1514rexbidv 3081 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1615rspccv 3337 . . . . 5 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1713, 16syl5bir 233 . . . 4 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
189, 17syl6 35 . . 3 (𝐽 ∈ Nrm → (𝐴𝐽 → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))))
1918exp4a 632 . 2 (𝐽 ∈ Nrm → (𝐴𝐽 → (𝐵 ∈ (Clsd‘𝐽) → (𝐵𝐴 → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))))
20193imp2 1304 1 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cin 3606  wss 3607  𝒫 cpw 4191  cfv 5926  Topctop 20746  Clsdccld 20868  clsccl 20870  Nrmcnrm 21162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-nrm 21169
This theorem is referenced by:  nrmsep2  21208  kqnrmlem1  21594  kqnrmlem2  21595  nrmr0reg  21600  nrmhmph  21645
  Copyright terms: Public domain W3C validator