MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgid Structured version   Visualization version   GIF version

Theorem nsgid 18316
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
nsgid.z 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgid (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))

Proof of Theorem nsgid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgid.z . . 3 𝐵 = (Base‘𝐺)
21subgid 18275 . 2 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
3 simp1 1132 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → 𝐺 ∈ Grp)
4 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
51, 4grpcl 18105 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
6 simp2 1133 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → 𝑥𝐵)
7 eqid 2821 . . . . . 6 (-g𝐺) = (-g𝐺)
81, 7grpsubcl 18173 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
93, 5, 6, 8syl3anc 1367 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
1093expb 1116 . . 3 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
1110ralrimivva 3191 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
121, 4, 7isnsg3 18306 . 2 (𝐵 ∈ (NrmSGrp‘𝐺) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵))
132, 11, 12sylanbrc 585 1 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Grpcgrp 18097  -gcsg 18099  SubGrpcsubg 18267  NrmSGrpcnsg 18268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-ress 16485  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-nsg 18271
This theorem is referenced by:  0idnsgd  18317  trivnsgd  18318  1nsgtrivd  18320  2nsgsimpgd  19218
  Copyright terms: Public domain W3C validator