Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Structured version   Visualization version   GIF version

Theorem nssinpss 3839
 Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 3816 . . 3 (𝐴𝐵) ⊆ 𝐴
21biantrur 527 . 2 ((𝐴𝐵) ≠ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
3 df-ss 3573 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
43necon3bbii 2837 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ 𝐴)
5 df-pss 3575 . 2 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
62, 4, 53bitr4i 292 1 𝐴𝐵 ↔ (𝐴𝐵) ⊊ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 384   ≠ wne 2790   ∩ cin 3558   ⊆ wss 3559   ⊊ wpss 3560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3191  df-in 3566  df-ss 3573  df-pss 3575 This theorem is referenced by:  fbfinnfr  21568  chrelat2i  29094
 Copyright terms: Public domain W3C validator