Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsspssun Structured version   Visualization version   GIF version

Theorem nsspssun 3835
 Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
nsspssun 𝐴𝐵𝐵 ⊊ (𝐴𝐵))

Proof of Theorem nsspssun
StepHypRef Expression
1 ssun2 3755 . . . 4 𝐵 ⊆ (𝐴𝐵)
21biantrur 527 . . 3 (¬ (𝐴𝐵) ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴𝐵) ∧ ¬ (𝐴𝐵) ⊆ 𝐵))
3 ssid 3603 . . . . 5 𝐵𝐵
43biantru 526 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐵𝐵))
5 unss 3765 . . . 4 ((𝐴𝐵𝐵𝐵) ↔ (𝐴𝐵) ⊆ 𝐵)
64, 5bitri 264 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) ⊆ 𝐵)
72, 6xchnxbir 323 . 2 𝐴𝐵 ↔ (𝐵 ⊆ (𝐴𝐵) ∧ ¬ (𝐴𝐵) ⊆ 𝐵))
8 dfpss3 3671 . 2 (𝐵 ⊊ (𝐴𝐵) ↔ (𝐵 ⊆ (𝐴𝐵) ∧ ¬ (𝐴𝐵) ⊆ 𝐵))
97, 8bitr4i 267 1 𝐴𝐵𝐵 ⊊ (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 384   ∪ cun 3553   ⊆ wss 3555   ⊊ wpss 3556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3188  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571 This theorem is referenced by:  disjpss  4000  lindsenlbs  33033
 Copyright terms: Public domain W3C validator