MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntr0 Structured version   Visualization version   GIF version

Theorem ntr0 20795
Description: The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
ntr0 (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅)

Proof of Theorem ntr0
StepHypRef Expression
1 0opn 20634 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
2 0ss 3944 . . 3 ∅ ⊆ 𝐽
3 eqid 2621 . . . 4 𝐽 = 𝐽
43isopn3 20780 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅))
52, 4mpan2 706 . 2 (𝐽 ∈ Top → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅))
61, 5mpbid 222 1 (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wss 3555  c0 3891   cuni 4402  cfv 5847  Topctop 20617  intcnt 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-top 20621  df-ntr 20734
This theorem is referenced by:  iccntr  22532
  Copyright terms: Public domain W3C validator