Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfv1 Structured version   Visualization version   GIF version

Theorem ntrclsfv1 40403
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsfv1 (𝜑 → (𝐷𝐼) = 𝐾)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfv1
StepHypRef Expression
1 ntrcls.r . 2 (𝜑𝐼𝐷𝐾)
2 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
3 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
42, 3, 1ntrclsf1o 40399 . . . . . 6 (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
5 f1ofn 6615 . . . . . 6 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵m 𝒫 𝐵))
64, 5syl 17 . . . . 5 (𝜑𝐷 Fn (𝒫 𝐵m 𝒫 𝐵))
72, 3, 1ntrclsiex 40401 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
86, 7jca 514 . . . 4 (𝜑 → (𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
9 fnfun 6452 . . . . . 6 (𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) → Fun 𝐷)
109adantr 483 . . . . 5 ((𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → Fun 𝐷)
11 fndm 6454 . . . . . . 7 (𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵m 𝒫 𝐵))
1211eleq2d 2898 . . . . . 6 (𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) → (𝐼 ∈ dom 𝐷𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)))
1312biimpar 480 . . . . 5 ((𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐼 ∈ dom 𝐷)
1410, 13jca 514 . . . 4 ((𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (Fun 𝐷𝐼 ∈ dom 𝐷))
158, 14syl 17 . . 3 (𝜑 → (Fun 𝐷𝐼 ∈ dom 𝐷))
16 funbrfvb 6719 . . 3 ((Fun 𝐷𝐼 ∈ dom 𝐷) → ((𝐷𝐼) = 𝐾𝐼𝐷𝐾))
1715, 16syl 17 . 2 (𝜑 → ((𝐷𝐼) = 𝐾𝐼𝐷𝐾))
181, 17mpbird 259 1 (𝜑 → (𝐷𝐼) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cdif 3932  𝒫 cpw 4538   class class class wbr 5065  cmpt 5145  dom cdm 5554  Fun wfun 6348   Fn wfn 6349  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  m cmap 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407
This theorem is referenced by:  ntrclsfv2  40404  ntrclscls00  40414  ntrclsiso  40415  ntrclsk2  40416  ntrclskb  40417  ntrclsk3  40418  ntrclsk13  40419
  Copyright terms: Public domain W3C validator