Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsnvobr Structured version   Visualization version   GIF version

Theorem ntrclsnvobr 38170
 Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsnvobr (𝜑𝐾𝐷𝐼)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsnvobr
StepHypRef Expression
1 ntrcls.o . . 3 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . 3 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
42, 3ntrclsbex 38152 . . 3 (𝜑𝐵 ∈ V)
51, 2, 4dssmapnvod 38134 . 2 (𝜑𝐷 = 𝐷)
61, 2, 3ntrclsf1o 38169 . . . 4 (𝜑𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
7 f1orel 6127 . . . 4 (𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → Rel 𝐷)
8 relbrcnvg 5492 . . . 4 (Rel 𝐷 → (𝐾𝐷𝐼𝐼𝐷𝐾))
96, 7, 83syl 18 . . 3 (𝜑 → (𝐾𝐷𝐼𝐼𝐷𝐾))
103, 9mpbird 247 . 2 (𝜑𝐾𝐷𝐼)
115, 10breqdi 4659 1 (𝜑𝐾𝐷𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1481  Vcvv 3195   ∖ cdif 3564  𝒫 cpw 4149   class class class wbr 4644   ↦ cmpt 4720  ◡ccnv 5103  Rel wrel 5109  –1-1-onto→wf1o 5875  ‘cfv 5876  (class class class)co 6635   ↑𝑚 cmap 7842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844 This theorem is referenced by:  ntrclskex  38172  ntrclsfv2  38174  ntrclselnel2  38176  ntrclsfveq2  38179  ntrclsk4  38190
 Copyright terms: Public domain W3C validator