MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrdif Structured version   Visualization version   GIF version

Theorem ntrdif 21654
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrdif ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))

Proof of Theorem ntrdif
StepHypRef Expression
1 difss 4107 . . . 4 (𝑋𝐴) ⊆ 𝑋
2 clscld.1 . . . . 5 𝑋 = 𝐽
32ntrval2 21653 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
41, 3mpan2 689 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
54adantr 483 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
6 simpr 487 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
7 dfss4 4234 . . . . 5 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
86, 7sylib 220 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
98fveq2d 6668 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
109difeq2d 4098 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
115, 10eqtrd 2856 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  wss 3935   cuni 4831  cfv 6349  Topctop 21495  intcnt 21619  clsccl 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-top 21496  df-cld 21621  df-ntr 21622  df-cls 21623
This theorem is referenced by:  clsun  33671
  Copyright terms: Public domain W3C validator