MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntreq0 Structured version   Visualization version   GIF version

Theorem ntreq0 20791
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntreq0 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ntreq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21ntrval 20750 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
32eqeq1d 2623 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ (𝐽 ∩ 𝒫 𝑆) = ∅))
4 neq0 3906 . . . . 5 (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆))
54con1bii 346 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ (𝐽 ∩ 𝒫 𝑆) = ∅)
6 ancom 466 . . . . . . . . . 10 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥))
7 elin 3774 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥𝐽𝑥 ∈ 𝒫 𝑆))
87anbi1i 730 . . . . . . . . . 10 ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ ((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥))
9 anass 680 . . . . . . . . . 10 (((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
106, 8, 93bitri 286 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1110exbii 1771 . . . . . . . 8 (∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
12 eluni 4405 . . . . . . . 8 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)))
13 df-rex 2913 . . . . . . . 8 (∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1411, 12, 133bitr4i 292 . . . . . . 7 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
1514exbii 1771 . . . . . 6 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
16 rexcom4 3211 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
17 19.42v 1915 . . . . . . 7 (∃𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1817rexbii 3034 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1915, 16, 183bitr2i 288 . . . . 5 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
2019notbii 310 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
215, 20bitr3i 266 . . 3 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
22 ralinexa 2991 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
23 selpw 4137 . . . . 5 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
24 neq0 3906 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2524con1bii 346 . . . . 5 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
2623, 25imbi12i 340 . . . 4 ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ (𝑥𝑆𝑥 = ∅))
2726ralbii 2974 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
2821, 22, 273bitr2i 288 . 2 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
293, 28syl6bb 276 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402  cfv 5847  Topctop 20617  intcnt 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-top 20621  df-ntr 20734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator