Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrfval Structured version   Visualization version   GIF version

Theorem ntrfval 20751
 Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrfval (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem ntrfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 20643 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4815 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 6444 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V)
6 unieq 4415 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2673 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4140 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 ineq1 3790 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥))
109unieqd 4417 . . . 4 (𝑗 = 𝐽 (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥))
118, 10mpteq12dv 4698 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
12 df-ntr 20747 . . 3 int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
1311, 12fvmptg 6242 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V) → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
145, 13mpdan 701 1 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  Vcvv 3189   ∩ cin 3558  𝒫 cpw 4135  ∪ cuni 4407   ↦ cmpt 4678  ‘cfv 5852  Topctop 20630  intcnt 20744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-top 20631  df-ntr 20747 This theorem is referenced by:  ntrval  20763  ntrrn  37937  ntrf  37938  dssmapntrcls  37943
 Copyright terms: Public domain W3C validator