MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmullem Structured version   Visualization version   GIF version

Theorem ntrivcvgmullem 14627
Description: Lemma for ntrivcvgmul 14628. (Contributed by Scott Fenton, 19-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmullem.1 𝑍 = (ℤ𝑀)
ntrivcvgmullem.2 (𝜑𝑁𝑍)
ntrivcvgmullem.3 (𝜑𝑃𝑍)
ntrivcvgmullem.4 (𝜑𝑋 ≠ 0)
ntrivcvgmullem.5 (𝜑𝑌 ≠ 0)
ntrivcvgmullem.6 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
ntrivcvgmullem.7 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
ntrivcvgmullem.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmullem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmullem.a (𝜑𝑁𝑃)
ntrivcvgmullem.b ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmullem (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑤,𝐹   𝐻,𝑞,𝑤   𝑃,𝑞,𝑤   𝑤,𝑌   𝑍,𝑞   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑃,𝑘   𝑘,𝑍   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑤,𝑞)   𝑀(𝑤,𝑘,𝑞)   𝑁(𝑤,𝑞)   𝑋(𝑤,𝑘,𝑞)   𝑌(𝑘,𝑞)   𝑍(𝑤)

Proof of Theorem ntrivcvgmullem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ntrivcvgmullem.3 . 2 (𝜑𝑃𝑍)
2 eqid 2621 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3 ntrivcvgmullem.a . . . . . . . 8 (𝜑𝑁𝑃)
4 ntrivcvgmullem.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 uzssz 11704 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3633 . . . . . . . . . 10 𝑍 ⊆ ℤ
7 ntrivcvgmullem.2 . . . . . . . . . 10 (𝜑𝑁𝑍)
86, 7sseldi 3599 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
96, 1sseldi 3599 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
10 eluz 11698 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
118, 9, 10syl2anc 693 . . . . . . . 8 (𝜑 → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
123, 11mpbird 247 . . . . . . 7 (𝜑𝑃 ∈ (ℤ𝑁))
13 ntrivcvgmullem.6 . . . . . . 7 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
14 ntrivcvgmullem.4 . . . . . . 7 (𝜑𝑋 ≠ 0)
154uztrn2 11702 . . . . . . . . 9 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
167, 15sylan 488 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
17 ntrivcvgmullem.8 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1816, 17syldan 487 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
192, 12, 13, 14, 18ntrivcvgtail 14626 . . . . . 6 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0 ∧ seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹))))
2019simprd 479 . . . . 5 (𝜑 → seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)))
21 climcl 14224 . . . . 5 (seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)) → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
2220, 21syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
23 ntrivcvgmullem.7 . . . . 5 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
24 climcl 14224 . . . . 5 (seq𝑃( · , 𝐺) ⇝ 𝑌𝑌 ∈ ℂ)
2523, 24syl 17 . . . 4 (𝜑𝑌 ∈ ℂ)
2619simpld 475 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0)
27 ntrivcvgmullem.5 . . . 4 (𝜑𝑌 ≠ 0)
2822, 25, 26, 27mulne0d 10676 . . 3 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0)
29 eqid 2621 . . . 4 (ℤ𝑃) = (ℤ𝑃)
30 seqex 12798 . . . . 5 seq𝑃( · , 𝐻) ∈ V
3130a1i 11 . . . 4 (𝜑 → seq𝑃( · , 𝐻) ∈ V)
324uztrn2 11702 . . . . . . . 8 ((𝑃𝑍𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
331, 32sylan 488 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
3433, 17syldan 487 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐹𝑘) ∈ ℂ)
3529, 9, 34prodf 14613 . . . . 5 (𝜑 → seq𝑃( · , 𝐹):(ℤ𝑃)⟶ℂ)
3635ffvelrnda 6357 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐹)‘𝑗) ∈ ℂ)
37 ntrivcvgmullem.9 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3833, 37syldan 487 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐺𝑘) ∈ ℂ)
3929, 9, 38prodf 14613 . . . . 5 (𝜑 → seq𝑃( · , 𝐺):(ℤ𝑃)⟶ℂ)
4039ffvelrnda 6357 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐺)‘𝑗) ∈ ℂ)
41 simpr 477 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑗 ∈ (ℤ𝑃))
42 simpll 790 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝜑)
431adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑃𝑍)
44 elfzuz 12335 . . . . . . 7 (𝑘 ∈ (𝑃...𝑗) → 𝑘 ∈ (ℤ𝑃))
4543, 44, 32syl2an 494 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝑘𝑍)
4642, 45, 17syl2anc 693 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐹𝑘) ∈ ℂ)
4742, 45, 37syl2anc 693 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐺𝑘) ∈ ℂ)
48 ntrivcvgmullem.b . . . . . 6 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4942, 45, 48syl2anc 693 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5041, 46, 47, 49prodfmul 14616 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐻)‘𝑗) = ((seq𝑃( · , 𝐹)‘𝑗) · (seq𝑃( · , 𝐺)‘𝑗)))
5129, 9, 20, 31, 23, 36, 40, 50climmul 14357 . . 3 (𝜑 → seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))
52 ovex 6675 . . . 4 (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ∈ V
53 neeq1 2855 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (𝑤 ≠ 0 ↔ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0))
54 breq2 4655 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (seq𝑃( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)))
5553, 54anbi12d 747 . . . 4 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → ((𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤) ↔ ((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))))
5652, 55spcev 3298 . . 3 (((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
5728, 51, 56syl2anc 693 . 2 (𝜑 → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
58 seqeq1 12799 . . . . . 6 (𝑞 = 𝑃 → seq𝑞( · , 𝐻) = seq𝑃( · , 𝐻))
5958breq1d 4661 . . . . 5 (𝑞 = 𝑃 → (seq𝑞( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ 𝑤))
6059anbi2d 740 . . . 4 (𝑞 = 𝑃 → ((𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6160exbidv 1849 . . 3 (𝑞 = 𝑃 → (∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6261rspcev 3307 . 2 ((𝑃𝑍 ∧ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
631, 57, 62syl2anc 693 1 (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wex 1703  wcel 1989  wne 2793  wrex 2912  Vcvv 3198   class class class wbr 4651  cfv 5886  (class class class)co 6647  cc 9931  0cc0 9933   · cmul 9938  cle 10072  cz 11374  cuz 11684  ...cfz 12323  seqcseq 12796  cli 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-sup 8345  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-rp 11830  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-clim 14213
This theorem is referenced by:  ntrivcvgmul  14628
  Copyright terms: Public domain W3C validator